Citation: | YANG Xin,SU Le,CHENG Yongjun,et al. Health status identification of scraper conveyer based on fusion of multiple graph structure information[J]. Coal Science and Technology,2024,52(8):171−181. DOI: 10.12438/cst.2023-1557 |
Scraper conveyors are essential coal transportation equipment in underground coal mines, significantly impacting mine production. However, the harsh working environment and long-term use lead to wear and tear, degrading their performance. Therefore, timely monitoring of scraper conveyor’s health status is extremely critical. To address the limitations of traditional methods, which struggle with strong component coupling and require excessive manual intervention, a novel method for identifying health status of scraper conveyors is proposed. This method utilizes a Variational Autoencoder (VAE) co-optimized with Self-Attention (SA) and Normalizing Flow (NF) mechanisms to automatically construct health indicators without supervision, effectively fitting the implicit distribution of the indicators and overcoming the influence of outliers. Additionally, a method fusing multiple graph structure information is introduced, using multiple Graph Attention Networks (GAT) to extract and integrate this information. Experiments with real-world data from the scraper conveyor show that the model’s indentification accuracy achieve up to 98.60% and macro-average F1 scores up to 96.81%. This approach offers a novel and feasible solution for health status identification of scraper conveyors, with significant practical value.
[1] |
王学文,麻豪洲,李博,等. 不同工况条件下刮板输送机刚散耦合效应研究[J]. 煤炭科学技术,2023,51(11):190−201.
WANG Xuewen,MA Haozhou,LI Bo,et al. Research on rigid-discrete coupling effect of scraper conveyor under different working conditions[J]. Coal Science and Technology,2023,51(11):190−201.
|
[2] |
司垒,李嘉豪,谭超,等. 矿用刮板输送机垂直冲击下负载电流特性研究[J]. 煤炭科学技术,2023,51(2):400−411.
SI Lei,LI Jiahao,TAN Chao,et al. Study on load current characteristics of scraper conveyor under vertical impact[J]. Coal Science and Technology,2023,51(2):400−411.
|
[3] |
赵巧芝. 我国刮板输送机发展现状、趋势及关键技术[J]. 煤炭工程,2020,52(8):183−187.
ZHAO Qiaozhi. Current status,development and key technologies of scraper conveyers[J]. Coal Engineering,2020,52(8):183−187.
|
[4] |
丁华,吕彦宝,崔红伟,等. 基于分布式深度神经网络的刮板输送机启停工况故障诊断方法[J]. 振动与冲击,2023,42(18):112−122,249.
DING Hua,LU Yanbao,CUI Hongwei,et al. Fault diagnosis method for scraper conveyors under start-stop condition based on a distributed deep neural network[J]. Journal of vibration and shock,2023,42(18):112−122,249.
|
[5] |
杨俊叶,申冰. 基于机器学习的刮板输送机中部槽磨损预测方法[J]. 煤炭技术,2023,42(4):205−208.
YANG Junye,SHEN Bing. Prediction method for middle slot wear of scraper conveyor based on machine learning[J]. Coal Technology,2023,42(4):205−208.
|
[6] |
于国英,张小丽,张涛. 基于模糊神经网络的刮板输送机故障诊断[J]. 煤矿机械,2020,41(1):174−176.
YU Guoying,ZHANG Xiaoli,ZHANG Tao. Fault diagnosis of scraper conveyor based on fuzzy neural network[J]. Coal Mine Machinery,2020,41(1):174−176.
|
[7] |
原志明,林翔. 基于子空间学习刮板输送机减速器轴承变工况故障诊断[J]. 煤炭科学技术,2019,47(S2):64−67.
YUAN Zhiminɡ,LIN Xiang. Fault diagnosis of reducer bearing for scraper conveyor with different working conditions based on Subspace Learning[J]. Coal Science and Technology,2019,47(S2):64−67.
|
[8] |
王金辉,闵令江. 基于深度稀疏自编码刮板输送机故障诊断与分析[J]. 煤炭科学技术,2019,47(S2):68−73.
WANG Jinhui,MIN Lingjiang. Fault diagnosis and analysis of scraper conveyor based on deep sparse autoencoder[J]. Coal Science and Technology,2019,47(S2):68−73.
|
[9] |
马海龙. 基于多信息融合的刮板输送机减速机模糊故障诊断专家系统[J]. 煤矿机械,2019,40(9):174−176.
Ma Hailong. Fault diagnosis fuzzy expert system of scraper conveyer reducer based on multi-information fusion[J]. Coal Mine Machinery,2019,40(9):174−176.
|
[10] |
单鹏飞,孙浩强,来兴平,等. 基于改进Faster R-CNN的综放煤矸混合放出状态识别方法[J]. 煤炭学报,2022,47(3):1382−1394.
SHAN Pengfei,SUN Haoqiang,LAI Xingping,et al. Identification method on mixed and release state of coal-gangue masses of fully mechanized caving based on improved Faster R-CNN[J]. Journal of China Coal Society,2022,47(3):1382−1394.
|
[11] |
陈伟华,南鹏飞,闫孝姮,等. 基于深度学习的采煤机截割轨迹预测及模型优化[J]. 煤炭学报,2020,45(12):4209−4215.
CHEN Weihua,NAN Pengfei,YAN Xiaoheng,et al. Prediction and model optimization of shearer memory cutting trajectory based on deep learning[J]. Journal of China Coal Society,2020,45(12):4209−4215.
|
[12] |
王晓玉,王金瑞,韩宝坤,等. 信号分辨率增强的机械智能故障诊断方法研究[J]. 振动工程学报,2021,34(6):1305−1312.
WANG Xiaoyu,WANG Jinrui,HAN Baokun,et al. Intelligent fault diagnosis method for signal resolution enhancement[J]. Journal of Vibration Engineering,2021,34(6):1305−1312.
|
[13] |
崔卫秀,穆润青,解鸿章,等. 500 m超长工作面刮板智能输送技术研究[J]. 煤炭科学技术,2024,52(4):326−335. doi: 10.12438/cst.2023-0739
CUI Weixiu,MU Runqing,XIE Hongzhang,et al. Research on intelligent conveying technology of 500m ultra-long face scraper[J]. Coal Science and Technology,2024,52(4):326−335. doi: 10.12438/cst.2023-0739
|
[14] |
KONG Z,JIN X,XU Z,et al. Spatio-temporal fusion attention:a novel approach for remaining useful life prediction based on graph neural network[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1−12.
|
[15] |
ZHANG X,ZHAO F,ZHANG X,et al. A General fault prediction framework based on relationship mining and graph neural network[C]//2022 Global Reliability and Prognostics and Health Management (PHM-Yantai). IEEE,2022:1-5.
|
[16] |
ZHANG D,STEWART E,ENTEZAMI M,et al. Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network[J]. Measurement,2020,156:107585. doi: 10.1016/j.measurement.2020.107585
|
[17] |
XIAO L,YANG X,YANG X. A graph neural network-based bearing fault detection method[J]. Scientific Reports,2023,13(1):5286. doi: 10.1038/s41598-023-32369-y
|
[18] |
李晋,朱强强,范旭峰,等. 大型机电设备健康状态评估方法研究[J]. 工矿自动化,2015,41(1):6−9.
LI J,ZHU Q Q,FAN X F,et al. Research on health status assessment methods of large-scale electromechanical equipment[J]. Industry and Mine Automation,2015,41(1):6−9.
|
[19] |
VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS 2017). Red Hook:Curran Associates Inc.,2017:6000−6010.
|
[20] |
DINH L,SOHL-DICKSTEIN J,BENGIO S. Density estimation using real nvp[J]. arXiv preprint arXiv:1605.08803,2016.
|
[21] |
曹现刚,陈瑞昊,李彦川,等. 基于XGBoost的采煤机健康状态评估方法研究[J]. 煤炭工程,2022,54(5):175−181.
CAO Xiangang,CHEN Ruihao,Ll Yanchuan,et al. XGBoost-based health evaluation method of shearer[J]. Coal Engineering,2022,54(5):175−181.
|
[22] |
王帅星,黄茜,王晓笋,等. WPT、PCA与SVM结合的滚动轴承故障程度诊断[J]. 机械设计与制造,2022(4):5−9. doi: 10.3969/j.issn.1001-3997.2022.04.002
WANG Shuaixing,HUANG Xi,WANG Xiaosun,et al. Fault Degree Diagnosis of Rolling Bearing with Implementation of WPT、PCA and SVM[J]. Machinery Design & Manufacture,2022(4):5−9. doi: 10.3969/j.issn.1001-3997.2022.04.002
|
[23] |
曹现刚,许欣,雷卓等. 基于降噪自编码器与改进卷积神经网络的采煤机健康状态识别[J]. 信息与控制,2022,51(1):98−106.
CAO Xiangang,XU Xin,LEI Zhuo,et al. Health status identification of shearer based on denoising autoencoder and improved convolutional neural network[J]. Information and Control,2022,51(1):98−106.
|
[24] |
白雲杰,贾希胜,梁庆海,等. 基于深度学习的柴油机气门健康状态评估[J]. 科学技术与工程,2022,22(10):3941−3950. doi: 10.3969/j.issn.1671-1815.2022.10.013
BAI Yunjie,JIA Xisheng,LIANG Qinghai,et al. Evaluation of diesel engine valve health status based on deep learning[J]. Science Technology and Engineering,2022,22(10):3941−3950. doi: 10.3969/j.issn.1671-1815.2022.10.013
|
[25] |
VAN DER Maaten L,HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research,2008,9(11):2579−2605.
|