Advance Search
HUA Jun,HAN Guiqi. Research on application of ultra-high pressure water jet slotting + nitrogen injection displacement technology[J]. Coal Science and Technology,2024,52(S2):71−78. DOI: 10.12438/cst.2023-1774
Citation: HUA Jun,HAN Guiqi. Research on application of ultra-high pressure water jet slotting + nitrogen injection displacement technology[J]. Coal Science and Technology,2024,52(S2):71−78. DOI: 10.12438/cst.2023-1774

Research on application of ultra-high pressure water jet slotting + nitrogen injection displacement technology

More Information
  • Received Date: August 16, 2023
  • Available Online: January 20, 2025
  • In view of the basic characteristics of high gas content, poor permeability and short effective extraction time of No. 2 coal seam in 217 working face of Huangling No.2 well, the technical measures of ultra-high pressure water jet + nitrogen injection displacement coal seam gas enhanced extraction were put forward. Based on the theoretical analysis of the technical principle of ultra-high pressure water jet slotting + nitrogen injection displacement, the technology of ultra-high pressure water jet slotting + nitrogen injection displacement and the secondary sealing technology of nitrogen injection drilling were proposed. By means of COMSOL Multiphysics multi-field coupling software numerical simulation, the mathematical model of gas extraction effect after different technical measures were analyzed and summarized, which was basically consistent with the field industrial test results. The results show that the effect of water jet slotting + nitrogen injection displacement on borehole gas extraction was the most obvious. The gas extraction effect of borehole was mainly affected by the secondary cracks caused by the fracture of surrounding coal body caused by water jet slotting. Nitrogen injection displacement plays a driving role in the gas migration of secondary cracks, which promoted the radial flow of gas and improved the efficiency of gas extraction.

  • [1]
    袁亮,薛俊华,张农,等. 煤层气抽采和煤与瓦斯共采关键技术现状与展望[J]. 煤炭科学技术,2013,41(9):6−11,17.

    YUAN Liang,XUE Junhua,ZHANG Nong,et al. Development orientation and status of key technology for mine underground coal bed methane drainage as well as coal and gas simultaneous mining[J]. Coal Science and Technology,2013,41(9):6−11,17.
    [2]
    刘见中,沈春明,雷毅,等. 煤矿区煤层气与煤炭协调开发模式与评价方法[J]. 煤炭学报,2017,42(5):1221−1229.

    LIU Jianzhong,SHEN Chunming,LEI Yi,et al. Coordinated development mode and evaluation method of coalbed methane and coal in coal mine area in China[J]. Journal of China Coal Society,2017,42(5):1221−1229.
    [3]
    李元林,刘勇,王沉,等. 高瓦斯低透气性煤层深孔预裂爆破增透技术研究及应用[J]. 中国安全生产科学技术,2020,16(9):71−76.

    LI Yuanlin,LIU Yong,WANG Chen,et al. Research and application of deep hole pre-splitting blasting technology for permeability enhancement in high gas and low permeability coal seam[J]. Journal of Safety Science and Technology,2020,16(9):71−76.
    [4]
    魏建平,李波,刘明举,等. 水力冲孔消突有效影响半径测定及钻孔参数优化[J]. 煤炭科学技术,2010,38(5):39−42.

    WEI Jianping,LI Bo,LIU Mingju,et al. Measuration on effective influence radius of hydraulic flushing borehole to eliminate outburst and borehole parameters optimization[J]. Coal Science and Technology,2010,38(5):39−42.
    [5]
    王长禄. 切槽导向水力压裂联合增透技术研究[J]. 能源与环保,2023,45(7):78−83.

    WANG Changlu. Research on joint antireflection technology of groove-guided hydraulic fracturing[J]. China Energy and Environmental Protection,2023,45(7):78−83.
    [6]
    李晓绅,刘瑞鹏. 含夹矸煤层水力割缝瓦斯抽采技术研究及应用[J]. 工矿自动化,2023,49(4):134−140.

    LI Xiaoshen,LIU Ruipeng. Research and application of hydraulic slotting gas extraction technology in coal seams containing gangue[J]. Journal of Mine Automation,2023,49(4):134−140.
    [7]
    张永将,陆占金. 超高压水力割缝煤层增透成套装置研制及应用[J]. 煤炭科学技术,2020,48(10):97−104.

    ZHANG Yongjiang,LU Zhanjin. Development and application of complete set of anti-reflection equipment for ultra-high pressure hydraulic seam cutting[J]. Coal Science and Technology,2020,48(10):97−104.
    [8]
    张永将,孟贤正,季飞. 顺层长钻孔超高压水力割缝增透技术研究与应用[J]. 矿业安全与环保,2018,45(5):1−5,11.

    ZHANG Yongjiang,MENG Xianzheng,JI Fei. Study and application of antireflection technology for ultra-high pressure hydraulic slitting of long bedding borehole[J]. Mining Safety & Environmental Protection,2018,45(5):1−5,11.
    [9]
    梁银权,王进尚,冯星宇. 高瓦斯低透气性煤层深钻孔高压水力割缝增透技术[J]. 煤炭工程,2019,51(6):99−102.

    LIANG Yinquan,WANG Jinshang,FENG Xingyu. Permeability-increasing technology of deep drilling supper-high pressure hydraulic cutting in high gas and low permeability coal seam[J]. Coal Engineering,2019,51(6):99−102.
    [10]
    吴海进,林柏泉,杨威,等. 初始应力对缝槽卸压效果影响的数值分析[J]. 采矿与安全工程学报,2009,26(2):194−197.

    WU Haijin,LIN Baiquan,YANG Wei,et al. Numerical analysis of the pressure relief effect on slot at different initial stresses[J]. Journal of Mining & Safety Engineering,2009,26(2):194−197.
    [11]
    杨慧明. 深部低透煤层水力割缝卸压增透技术研究现状及发展趋势[J]. 煤矿安全,2018,49(6):147−151.

    YANG Huiming. Research status and development tendency of hydraulic cutting technology for pressure relief and permeability increasing of deep coal seam[J]. Safety in Coal Mines,2018,49(6):147−151.
    [12]
    易恩兵,张永将. 超高压水射流“横切纵断”防治复合煤岩动力灾害技术[J]. 煤炭学报,2021,46(4):1271−1279.

    YI Enbing,ZHANG Yongjiang. Ultra-high-pressure water jet "cross-cut and longitudinal" technology to prevent and control composite coal and rock dynamic disasters[J]. Journal of China Coal Society,2021,46(4):1271−1279.
    [13]
    李晓红,王晓川,康勇,等. 煤层水力割缝系统过渡过程能量特性与耗散[J]. 煤炭学报,2014,39(8):1404−1408.

    LI Xiaohong,WANG Xiaochuan,KANG Yong,et al. Energy characteristic and dissipation in transient process of hydraulic cutting seams system in coal seam[J]. Journal of China Coal Society,2014,39(8):1404−1408.
    [14]
    唐巨鹏,李成全,潘一山. 水力割缝开采低渗透煤层气应力场数值模拟[J]. 天然气工业,2004,24(10):93−95,14-15,158.

    TANG Jupeng,LI Chengquan,PAN Yishan. Numeral simulation of stress field for low permeable coal bed gas recovering with hydraulic cutting[J]. Natural Gas Industry,2004,24(10):93−95,14-15,158.
    [15]
    王有熙,邓广哲. 煤层注水破坏机理的能量耗散分析[J]. 西安科技大学学报,2013,33(2):143−148.

    WANG Youxi,DENG Guangzhe. Energy dissipation of coal seam water injection failure mechanism[J]. Journal of Xi’an University of Science and Technology,2013,33(2):143−148.
    [16]
    葛兆龙,梅绪东,贾亚杰,等. 高压水射流割缝钻孔抽采影响半径研究[J]. 采矿与安全工程学报,2014,31(4):657−664.

    GE Zhaolong,MEI Xudong,JIA Yajie,et al. Influence radius of slotted borehole drainage by high pressure water jet[J]. Journal of Mining & Safety Engineering,2014,31(4):657−664.
    [17]
    庞锋,张劲,周劲辉,等. 氮气闷压对高阶煤渗透率影响的试验研究[J]. 煤炭科学技术,2019,47(2):101−106.

    PANG Feng,ZHANG Jin,ZHOU Jinhui,et al. Experimental study on the influence of nitrogen soaking on the permeability of high rank coal[J]. Coal Science and Technology,2019,47(2):101−106.
    [18]
    李健青. 煤层气井注氮增产机理及工艺参数优化研究[D]. 北京:中国石油大学(北京),2021.

    LI Jianqing. Nitrogen injection of coalbed methane well production mechanism and process parameters optimization research[D]. Beijing:China University of Petroleum (Beijing),2021.
    [19]
    林柏泉,吕有厂,李宝玉,等. 高压磨料射流割缝技术及其在防突工程中的应用[J]. 煤炭学报,2007,32(9):959−963.

    LIN Baiquan,LYU Youchang,LI Baoyu,et al. High-pressure abrasive hydraulic cutting seam technology and its application in outbursts prevention[J]. Journal of China Coal Society,2007,32(9):959−963.
    [20]
    李生舟,乔伟,王建. 深部突出煤层超高压水射流割缝工艺参数研究与应用[J]. 矿业安全与环保,2020,47(4):57−61.

    LI Shengzhou,QIAO Wei,WANG Jian. Research and application of technological parameters of ultra-high pressure water jet slotting in deep outburst coal seam[J]. Mining Safety & Environmental Protection,2020,47(4):57−61.

Catalog

    Article views (27) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return