Advance Search
ZHU Chuanqi,WANG Lei,LIU Huaiqian,et al. Dynamic compression mechanical properties of soft coal under different strain rates[J]. Coal Science and Technology,2025,53(4):244−254. DOI: 10.12438/cst.2023-1994
Citation: ZHU Chuanqi,WANG Lei,LIU Huaiqian,et al. Dynamic compression mechanical properties of soft coal under different strain rates[J]. Coal Science and Technology,2025,53(4):244−254. DOI: 10.12438/cst.2023-1994

Dynamic compression mechanical properties of soft coal under different strain rates

More Information
  • Received Date: December 25, 2023
  • Available Online: April 07, 2025
  • The disturbance of deep impact loading can easily induce the instability accident of surrounding rock in soft coal seam. In order to study the dynamic mechanical characteristics of soft coal under different strain rates, aiming at the soft coal of 11518 working face in Panyi Coal Mine of Huainan Mining Area, the cylindrical briquette samples of ø50 × 25 mm were pressed. The Split Hopkinson Pressure Bar (SHPB) equipment system was used to carry out the dynamic compression test of coal under five groups of impact velocities (0.30, 0.35, 0.40, 0.45, 0.50 MPa). The dynamic stress-strain curve of coal was obtained, the crushing energy consumption and energy consumption density were calculated, the quality of broken coal in different particle size ranges was screened, and the variation of mechanical characteristic parameters, energy dissipation and crushing characteristics of coal with strain rate were analyzed. The strain rate effect of coal impact failure was revealed. The results show that: ① In the range of strain rate in test, the initial compaction stage of coal is not obvious, and with the increase of strain rate, the slope of the curve in the elastic deformation stage increases slowly, the yield stage increases, and the drop of stress in the softening stage increases. ② The peak stress, peak strain and secant modulus of coal increase linearly with the increase of strain rate, with an increase of 130.998 %, 111.335 % and 52.026 %, respectively.③ With the increase of strain rate, the crushing energy consumption and crushing energy consumption density of coal increase exponentially, and the proportion of crushing energy consumption increases gradually. ④ The larger the strain rate, the more the small volume fragments of coal after failure. In the process of strain rate changing from 66.778 s−1 to 259.154 s−1, the average particle size of the fragments gradually decreased from 3.34 mm to 2.49 mm, and the fractal dimension of the fragments increased slowly from 2.37 to 2.61. The variation trend of crushing characteristics of briquette with strain rate is consistent with that of raw coal (strain rate 57.433 ~ 240.100 s−1). The research results can provide experimental basis for clarifying the dynamic mechanical response process of soft coal under impact loading and preventing and controlling instability disasters.

  • [1]
    彭苏萍,袁亮. 淮南煤矿三维地震勘探技术应用与效果[J]. 安徽地质,2011,21(2):95−99. doi: 10.3969/j.issn.1005-6157.2011.02.005

    PENG Suping,YUAN Liang. Research and achievements of three dimensional seismic prospecting technologies in Huainan coal mines[J]. Geology of Anhui,2011,21(2):95−99. doi: 10.3969/j.issn.1005-6157.2011.02.005
    [2]
    李夕兵,宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报,2021,46(3):846−866.

    LI Xibing,GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society,2021,46(3):846−866.
    [3]
    张盈盈,杨云,张景,等. 2021—2023年我国煤矿事故统计分析及致因研究[J]. 矿业研究与开发,2024,44(11):224−231.

    ZHANG Yingying,YANG Yun,ZHANG Jing,et al. Statistical Analysis and Causal Research on Coal Mine Accidents in China from 2021 to 2023[J]. Mining Research and Development,2024,44(11):224−231.
    [4]
    LI J,ZHAO J,GONG S Y,et al. Mechanical anisotropy of coal under coupled biaxial static and dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences,2021,143:104807. doi: 10.1016/j.ijrmms.2021.104807
    [5]
    LI J,WANG H C,ZHANG Q B. Progressive damage and fracture of biaxially-confined anisotropic coal under repeated impact loads[J]. International Journal of Rock Mechanics and Mining Sciences,2022,149:104979. doi: 10.1016/j.ijrmms.2021.104979
    [6]
    赵毅鑫,肖汉,黄亚琼. 霍普金森杆冲击加载煤样巴西圆盘劈裂试验研究[J]. 煤炭学报,2014,39(2):286−291.

    ZHAO Yixin,XIAO Han,HUANG Yaqiong. Dynamic split tensile test of Brazilian disc of coal with split Hopkinson pressure bar loading[J]. Journal of China Coal Society,2014,39(2):286−291.
    [7]
    龚爽,赵毅鑫,王震,等. 层理对煤岩动态裂纹扩展分形特征的影响[J]. 煤炭学报,2021,46(8):2574−2582.

    GONG Shuang,ZHAO Yixin,WANG Zhen,et al. Effect of bedding on the fractal characteristics of dynamic crack propagation in coal rocks[J]. Journal of China Coal Society,2021,46(8):2574−2582.
    [8]
    解北京,王新艳,吕平洋. 层理煤岩SHPB冲击破坏动态力学特性实验[J]. 振动与冲击,2017,36(21):117−124.

    XIE Beijing,WANG Xinyan,LV Pingyang. Dynamic properties of bedding coal and rock and the SHPB testing for its impact damage[J]. Journal of Vibration and Shock,2017,36(21):117−124.
    [9]
    刘少虹,秦子晗,娄金福. 一维动静加载下组合煤岩动态破坏特性的试验分析[J]. 岩石力学与工程学报,2014,33(10):2064−2075.

    LIU Shaohong,QIN Zihan,LOU Jinfu. Experimental study of dynamic failure characteristics of coal-rock compound under one-dimensional static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2064−2075.
    [10]
    苗磊刚,牛园园,石必明. 不同应变率下岩-煤-岩组合体冲击动力试验研究[J]. 振动与冲击,2019,38(17):137−143.

    MIAO Leigang,NIU Yuanyuan,SHI Biming. Impact dynamic testsfor rock-coal-rock combination under different strain rates[J]. Journal of Vibration and Shock,2019,38(17):137−143.
    [11]
    杨科,魏祯,窦礼同,等. 含水煤样动态拉伸能量演化与破坏特征试验研究[J]. 煤炭学报,2021,46(2):398−411.

    YANG Ke,WEI Zhen,DOU Litong,et al. Research on dynamic tensile energy evolution and fractal characteristics of water-bearing coal samples[J]. Journal of China Coal Society,2021,46(2):398−411.
    [12]
    宋常胜,王文,刘凯,等. 真三轴动静组合加载饱水煤样能量耗散特征[J]. 煤炭学报,2022,47(5):2011−2026.

    SONG Changsheng,WANG Wen,LIU Kai,et al. Energy dissipation characteristics of water saturated coal samples under true triaxial dynamic and static combined loading[J]. Journal of China Coal Society,2022,47(5):2011−2026.
    [13]
    王文,张世威,LIUKai,等. 真三轴动静组合加载饱水煤样动态强度特征研究[J]. 岩石力学与工程学报,2019,38(10):2010−2020.

    WANG Wen,ZHANG Shiwei,LIUKAI,et al. Experimental study on dynamic strength characteristics of water-saturated coal under true triaxial static-dynamic combination loadings[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):2010−2020.
    [14]
    吴拥政,孙卓越,付玉凯. 三维动静加载下不同长径比煤样力学特性及能量耗散规律[J]. 岩石力学与工程学报,2022,41(5):877−888.

    WU Yongzheng,SUN Zhuoyue,FU Yukai. Mechanical characteristics and energy dissipation law of coal samples with different length-diameter ratios under three-dimensional dynamic and static loading[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):877−888.
    [15]
    王磊,袁秋鹏,谢广祥,等. 冲击载荷下煤样能量耗散与破碎分形的长径比效应[J]. 煤炭学报,2022,47(4):1534−1546.

    WANG Lei,YUAN Qiupeng,XIE Guangxiang,et al. Length-diameter ratio effect of energy dissipation and fractals of coal samples under impact loading[J]. Journal of China Coal Society,2022,47(4):1534−1546.
    [16]
    王登科,刘淑敏,魏建平,等. 冲击载荷作用下煤的破坏特性试验研究[J]. 采矿与安全工程学报,2017,34(3):594−600.

    WANG Dengke,LIU Shumin,WEI Jianping,et al. The failure characteristics of coal under impact load in laboratory[J]. Journal of Mining & Safety Engineering,2017,34(3):594−600.
    [17]
    李明,茅献彪,曹丽丽,等. 高应变率下煤力学特性试验研究[J]. 采矿与安全工程学报,2015,32(2):317−324.

    LI Ming,MAO Xianbiao,CAO Lili,et al. Experimental study on mechanical properties of coal under high strain rate[J]. Journal of Mining & Safety Engineering,2015,32(2):317−324.
    [18]
    汪海波,高强,宗琦,等. 冲击载荷作用下硬煤的动态力学特性研究[J]. 采矿与安全工程学报,2019,36(2):344−350.

    WANG Haibo,GAO Qiang,ZONG Qi,et al. Research on dynamic mechanical properties of hard coal under impact load[J]. Journal of Mining & Safety Engineering,2019,36(2):344−350.
    [19]
    朱传奇,谢广祥,王磊. 松软煤体波速演化规律与破坏程度量化指标[J]. 煤炭学报,2022,47(7):2609−2622.

    ZHU Chuanqi,XIE Guangxiang,WANG Lei. Wave velocity evolution law and quantitative index of damage degree of soft coal[J]. Journal of China Coal Society,2022,47(7):2609−2622.
    [20]
    聂百胜,薛斐. 软煤钻杆研究进展及发展趋势[J]. 煤炭科学技术,2016,44(1):47−54.

    NIE Baisheng,XUE Fei. Research progress and development tendency of borehole drilling rod for soft seam[J]. Coal Science and Technology,2016,44(1):47−54.
    [21]
    周斌,郝晋伟,张春华. 松软煤层瓦斯钻孔失稳分析及动态密封技术[J]. 煤田地质与勘探,2016,44(4):161−166. doi: 10.3969/j.issn.1001-1986.2016.04.031

    ZHOU Bin,HAO Jinwei,ZHANG Chunhua. Analysis on borehole instability under coupled multiple stress and dynamic sealing technology in soft coal seam[J]. Coal Geology & Exploration,2016,44(4):161−166. doi: 10.3969/j.issn.1001-1986.2016.04.031
    [22]
    许江,叶桂兵,李波波,等. 不同黏结剂配比条件下型煤力学及渗透特性试验研究[J]. 岩土力学,2015,36(1):104−110.

    XU Jiang,YE Guibing,LI Bobo,et al. Experimental study of mechanical and permeability characteristics of moulded coals with different binder ratios[J]. Rock and Soil Mechanics,2015,36(1):104−110.
    [23]
    朱传奇,谢广祥,王磊,等. 含水率及孔隙率对松软煤体强度特征影响的试验研究[J]. 采矿与安全工程学报,2017,34(3):601−607.

    ZHU Chuanqi,XIE Guangxiang,WANG Lei,et al. Experimental study on the influence of moisture content and porosity on soft coal strength characteristics[J]. Journal of Mining & Safety Engineering,2017,34(3):601−607.
    [24]
    LI X B,ZOU Y,ZHOU Z L. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method[J]. Rock Mechanics and Rock Engineering,2014,47(5):1693−1709.
    [25]
    金解放,徐虹,余雄,等. 动荷载和含水率对红砂岩破坏及能耗特性的影响[J]. 岩土力学,2022,43(12):3231−3240.

    JIN Jiefang,XU Hong,YU Xiong,et al. Effect of dynamic load and water content on failure and energy dissipation characteristics of red sandstone[J]. Rock and Soil Mechanics,2022,43(12):3231−3240.
    [26]
    洪亮. 冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D]. 长沙:中南大学,2008.

    HONG Liang. Study on the size effect of rock strength and crushing energy consumption characteristics under impact load[D]. Changsha:Central South University,2008.
  • Cited by

    Periodical cited type(5)

    1. 鲁杰,张松,杨志强,王劭琛,魏征,刘泽. 基于WOA-DBN模型的支架载荷预测研究分析. 矿业研究与开发. 2025(03): 222-228 .
    2. 朱红伟,宋炳霖. 近直立煤层群动载诱冲作用规律研究. 煤炭技术. 2025(04): 201-209 .
    3. 晏旭龙,邬忠虎,蓝宝锋,姜海申,余俊,杨先超. 层理倾角与尺寸效应耦合作用下页岩致裂的数值模拟研究. 金属矿山. 2024(02): 137-143 .
    4. 秦长坤,赵武胜,贾海宾,高未己,陈郁川,于万泉,梁记忠,陈卫忠. 基于模态分解和深度学习的煤矿微震时序预测方法. 煤炭学报. 2024(09): 3781-3797 .
    5. 张冬冬,智奥龙,李震,张振国,李鹏,秦其智. 结构性效应对层状岩体力学特性与破坏特征的影响. 煤炭科学技术. 2022(04): 124-131 . 本站查看

    Other cited types(0)

Catalog

    Article views (9) PDF downloads (4) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return