Citation: | XU Ang,SANG Shuxun,ZHOU Xiaozhi,et al. Optimal design of coalbed methane wells in mining area with thin to medium thick coal seam group[J]. Coal Science and Technology,2025,53(3):383−396. DOI: 10.12438/cst.2024-1461 |
In mining areas, utilizing coalbed methane (CBM) wells to extract stress relief coalbed methane from adjacent coal seams is an efficient strategy. To enhance CBM extraction, it is vital to reveal the dynamics of stress and fracture fields evolution and optimization well locations and structure. Taking No. 221015 coalface in Shanjiaoshu coal mine as the study area. By integrating geo-engineering models and engineering data, the stress distribution within and between the overburden was elucidated, the distribution of fracture and the permeability increased zone in the overburden were elucidated, and the well location, structures and enhancement measures were designed. The research demonstrates that: The frequent alternation of lithological properties in the coal measure strata in the study area enhanced the mining influence on overburden. As the key strata progressively fail, the zone located 5~20 meters above the coalface were the fracture zones, in which a large amount of free methane can be migrated and produced across layers, serving as the primary gas source zone of CBM well. The 20~45 meters interval above the coalface belonged to the microfracture zone in the bending subsidence zone, possessing a gas production potential of nearly 2000 m3/d from adjacent coal seams within a single layer. In this area, stress relief CBM primarily migrates intra-strata and accumulates methane originating from the fracture zone. Optimal well site locations was enclosed by tangential line of the compaction zone along the direction of the coalface and the center line between tangential line of the compaction zone and the return airway, and boundary lines around fractured zones. Meanwhile, the two - or three-stages structure wells with high strength cement cementing and using reaming or screen suspended completion have good stability, which can guarantee long-term extraction work of CBM well. The optimized extraction well scheme provides technical support for achieving a gas production breakthrough of
[1] |
ZHANG R,CHENG Y P,ZHOU H X,et al. New insights into the permeability-increasing area of overlying coal seams disturbed by the mining of coal[J]. Journal of Natural Gas Science and Engineering,2018,49:352−364. doi: 10.1016/j.jngse.2017.11.031
|
[2] |
桑树勋,皇凡生,单衍胜,等. 碎软低渗煤储层强化与煤层气地面开发技术进展[J]. 煤炭科学技术,2024,52(1):196−210.
SANG Shuxun,HUANG Fansheng,SHAN Yansheng,et al. Technology processes of enhancement of broken soft and low permeability coal reservoir and surface development of coalbed methane[J]. Coal Science and Technology,2024,52(1):196−210.
|
[3] |
任波,袁亮,桑树勋,等. 厚表土层深井卸压开采地面钻井变形破坏及其预防:以淮南顾桥矿为例[J]. 煤田地质与勘探,2018,46(5):159−166.
REN Bo,YUAN Liang,SANG Shuxun,et al. Deformation and damage of pressure-relieved gas extraction wells in deep mining under thick surface soil and their prevention:With Guqiao of Huainan mine as an example[J]. Coal Geology & Exploration,2018,46(5):159−166.
|
[4] |
王双明,刘浪,赵玉娇,等. “双碳” 目标下赋煤区新能源开发:未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59−79.
WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal-endowed areas under the target of “double carbon”:A new path for transformation and upgrading of coal mines in the future[J]. Coal Science and Technology,2023,51(1):59−79.
|
[5] |
刘志高,张守宝,皇甫龙. 腾达煤矿倾斜煤层覆岩运移规律及“上三带” 高度的确定[J]. 采矿与岩层控制工程学报,2022,4(3):70−79.
LIU Zhigao,ZHANG Shoubao,HUANGFU Long. Overburden migration law of inclined coal seam and determination of ‘' upper three zones’ ‘height in Tengda Coal Mine[J]. Journal of Mining and Strata Control Engineering,2022,4(3):70−79.
|
[6] |
姜小强,樊少武,程志恒,等. 基于井上下联合抽采的三区联动瓦斯综合治理模式[J]. 煤炭科学技术,2018,46(6):107−113.
JIANG Xiaoqiang,FAN Shaowu,CHENG Zhiheng,et al. Three region linkage comprehensive gas control model based on ground and underground gas joint drainage[J]. Coal Science and Technology,2018,46(6):107−113.
|
[7] |
ZHENG C S,KIZIL M S,AMINOSSADATI S M,et al. Effects of geomechanical properties of interburden on the damage-based permeability variation in the underlying coal seam[J]. Journal of Natural Gas Science and Engineering,2018,55:42−51. doi: 10.1016/j.jngse.2018.04.017
|
[8] |
武玺,李国富,王争,等. 晋城岳城矿地面采动区井井位优选与抽采寿命研究[J]. 煤田地质与勘探,2021,49(1):130−136.
WU Xi,LI Guofu,WANG Zheng,et al. Study on the optimization of well location and extraction life in mining disturbed zone of Yuecheng mine in Jincheng[J]. Coal Geology & Exploration,2021,49(1):130−136.
|
[9] |
张永将,邹全乐,杨慧明,等. 突出煤层群井上下联合抽采防突模式与关键技术[J]. 煤炭学报,2023,48(10):3713−3730.
ZHANG Yongjiang,ZOU Quanle,YANG Huiming,et al. Joint ground and underground gas extraction mode and its key technology for outburst coal seam group[J]. Journal of China Coal Society,2023,48(10):3713−3730.
|
[10] |
钱鸣高,许家林. 覆岩采动裂隙分布的“O” 形圈特征研究[J]. 煤炭学报,1998,23(5):20−23.
QIAN Minggao,XU Jialin. Study on the “O shape” circle distribution characteristics of mining induced fractures in the overlaying strata[J]. Journal of China Coal Society,1998,23(5):20−23.
|
[11] |
MAJDI A,HASSANI F P,NASIRI M Y. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining[J]. International Journal of Coal Geology,2012,98:62−72. doi: 10.1016/j.coal.2012.04.005
|
[12] |
刘泽功,袁亮,戴广龙,等. 开采煤层顶板环形裂隙圈内走向长钻孔法抽放瓦斯研究[J]. 中国工程科学,2004,6(5):32−38.
LIU Zegong,YUAN Liang,DAI Guanglong,et al. Study on coal seam roof gas drainage from the strike of annular fracture areas by the long drill method[J]. Engineering Science,2004,6(5):32−38.
|
[13] |
杨科,谢广祥. 采动裂隙分布及其演化特征的采厚效应[J]. 煤炭学报,2008,33(10):1092−1096.
YANG Ke,XIE Guangxiang. Caving thickness effects on distribution and evolution characteristics of mining induced fracture[J]. Journal of China Coal Society,2008,33(10):1092−1096.
|
[14] |
张礼. 采动裂隙环形体理论模型及其在卸压瓦斯抽采中的应用[D]. 北京:中国矿业大学(北京),2020.
ZHANG Li. Theoretical model of mining fractured annular body and its application in pressure relief gas drainage[D]. Beijing:China University of Mining & Technology-Beijing,2020.
|
[15] |
付军辉. 采动区瓦斯地面井井身结构设计及安全防护研究[J]. 煤炭工程,2020,52(5):48−53.
FU Junhui. Study on structure design and safety protection of gas surface well in mining area[J]. Coal Engineering,2020,52(5):48−53.
|
[16] |
袁亮,郭华,李平,等. 大直径地面钻井采空区采动区瓦斯抽采理论与技术[J]. 煤炭学报,2013,38(1):1−8.
YUAN Liang,GUO Hua,LI Ping,et al. Theory and technology of goaf gas drainage with large-diameter surface boreholes[J]. Journal of China Coal Society,2013,38(1):1−8.
|
[17] |
WANG D Y,WANG Z M,ZENG Q S. An experimental study on gas/liquid/solid three-phase flow in horizontal coalbed methane production wells[J]. Journal of Petroleum Science and Engineering,2019,174:1009−1021. doi: 10.1016/j.petrol.2018.11.041
|
[18] |
徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.
XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682.
|
[19] |
薛俊华,肖健,杜轩宏,等. 我国煤矿保护层开采卸压瓦斯抽采现状及发展趋势[J]. 煤田地质与勘探,2023,51(6):50−61.
XUE Junhua,XIAO Jian,DU Xuanhong,et al. Current situation and development trend of pressure-relief gas extraction in the protective layer mining in coal mines in China[J]. Coal Geology & Exploration,2023,51(6):50−61.
|
[20] |
陈畅然,周效志,赵福平,等. 薄—中厚煤层群煤层气井高产的地质与工程协同控制技术:以贵州织纳煤田文家坝区块为例[J]. 天然气工业,2023,43(1):55−64.
CHEN Changran,ZHOU Xiaozhi,ZHAO Fuping,et al. Geological and engineering collaborative control technology for high production of CBM wells in thin-medium-thick coal seam clusters:A case study of Wenjiaba block in the Zhina Coalfield,Guizhou[J]. Natural Gas Industry,2023,43(1):55−64.
|
[21] |
高为,易同生,颜智华,等. 贵州省煤系气成藏条件及勘探方向[J]. 天然气地球科学,2022,33(5):799−806.
GAO Wei,YI Tongsheng,YAN Zhihua,et al. Reservoir forming conditions and exploration direction of coal measure gas in Guizhou Province[J]. Natural Gas Geoscience,2022,33(5):799−806.
|
[22] |
陈捷,胡海洋,娄毅,等. 贵州省低渗薄煤层水力增渗模拟及地面抽采试验:以山脚树矿YP-7井为例[J]. 煤炭科学技术,2023,51(S2):60−70.
CHEN Jie,HU Haiyang,LOU Yi,et al. Surface permeability improvement and gas control extraction test of low permeability thin coal seam in Guizhou province:Taking the YP-7 well of Shanjiaoshu Mine as an example[J]. Coal Science and Technology,2023,51(S2):60−70.
|
[23] |
张春雷. 煤层群上行开采层间裂隙演化及卸压空间效应[D]. 北京:中国矿业大学(北京),2017.
ZHANG Chunlei. Evolution of interlayer cracks and spatial effect of pressure relief in upward mining of coal seam groups[D]. Beijing:China University of Mining & Technology-Beijing,2017.
|
[24] |
雷顺,刘跃东,王永明,等. 煤与软弱夹层组合体裂纹扩展及变形破坏规律数值模拟研究[J]. 能源与环保,2023,45(11):21−27.
LEI Shun,LIU Yuedong,WANG Yongming,et al. Numerical simulation study on crack propagation and deformation failure law of coal and weak interlayer combination[J]. China Energy and Environmental Protection,2023,45(11):21−27.
|
[25] |
赵鹏翔,王晓玉,李树刚,等. 岩煤强度比对组合体破裂声发射及裂隙分形特性的影响[J]. 西安科技大学学报,2024,44(4):649−659.
ZHAO Pengxiang,WANG Xiaoyu,LI Shugang,et al. Effect of rock-coal strength ratio on acoustic emission and fracture fractal characteristics of assemblage[J]. Journal of Xi’an University of Science and Technology,2024,44(4):649−659.
|
[26] |
李树刚,钱鸣高,石平五. 综放开采覆岩离层裂隙变化及空隙渗流特性研究[J]. 岩石力学与工程学报,2000,19(5):604−607. doi: 10.3321/j.issn:1000-6915.2000.05.012
LI Shugang,QIAN Minggao,SHI Pingwu. Study on bed-separated fissures of overlying stratum and interstice permeability in fully-mechanized top coal caving[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(5):604−607. doi: 10.3321/j.issn:1000-6915.2000.05.012
|
[27] |
MENG Z P,SHI X C,LI G Q. Deformation,failure and permeability of coal-bearing strata during longwall mining[J]. Engineering Geology,2016,208:69−80. doi: 10.1016/j.enggeo.2016.04.029
|
[28] |
HUANG Q M,WU B,CHENG W M,et al. Investigation of permeability evolution in the lower slice during thick seam slicing mining and gas drainage:A case study from the Dahuangshan coalmine in China[J]. Journal of Natural Gas Science and Engineering,2018,52:141−154. doi: 10.1016/j.jngse.2018.01.036
|
[29] |
胡君. 煤矿采动区地面井群布置优化及其抽采效果评估方法研究[D]. 重庆:重庆大学,2020.
HU Jun. Study on optimization of surface well group layout and evaluation method of drainage effect in coal mining area[D]. Chongqing:Chongqing University,2020.
|
[30] |
胡千庭,孙海涛. 煤矿采动区地面井逐级优化设计方法[J]. 煤炭学报,2014,39(9):1907−1913.
HU Qianting,SUN Haitao. Graded optimization design method on surface gas drainage borehole[J]. Journal of China Coal Society,2014,39(9):1907−1913.
|
[31] |
降文萍,柴建禄,张群,等. 基于煤层气与煤炭协调开发的地面抽采工程部署关键技术进展[J]. 煤炭科学技术,2022,50(12):50−61.
JIANG Wenping,CHAI Jianlu,ZHANG Qun,et al. Key technology progress of surface extraction project deployment based on coordinated development of CBM and coal[J]. Coal Science and Technology,2022,50(12):50−61.
|
[32] |
刘江,桑树勋,周效志,等. 六盘水地区煤层气井合层排采实践与认识[J]. 煤田地质与勘探,2020,48(3):93−99.
LIU Jiang,SANG Shuxun,ZHOU Xiaozhi,et al. Practice and understanding of multi-layer drainage of CBM wells in Liupanshui area[J]. Coal Geology & Exploration,2020,48(3):93−99.
|
1. |
李培涛,刘泉声,朱元广,高峰,范利丹. 煤矿深部巷道大变形分步联合控制研究. 岩土力学. 2025(02): 591-612 .
![]() | |
2. |
李政委. 某矿大断面软岩顶板巷道围岩支护优化. 现代矿业. 2024(04): 212-215 .
![]() | |
3. |
李桂臣,邵泽宇,孙元田,李菁华,杨森,郝浩然,沃小芳. 煤矿掘采空间垮塌岩体稳定性与救援通道构建. 绿色矿山. 2024(01): 11-20 .
![]() | |
4. |
朱铖宇,刘洪林,陈志文,罗文杰,朱俊杰,邹长锋,吴振良. 弱胶结地层富水巷道围岩变形规律研究. 煤炭技术. 2024(06): 43-47 .
![]() | |
5. |
郑建伟,管增伦,鞠文君,张修峰,薛珊珊,王帅,李海涛,杨国强,李春元,王之禾. 三向应力下支护应力对圆形巷道围岩应力分布规律的影响. 采矿与岩层控制工程学报. 2024(03): 118-127 .
![]() | |
6. |
高永格,徐振铭,洛锋,陈振,王鹏,李盟,高帅,何团. 高偏应力煤巷围岩拉剪破裂特征及分区控制方法研究. 采矿与岩层控制工程学报. 2024(04): 66-79 .
![]() | |
7. |
刘家顺,周妮,左建平,郑智勇,金佳旭. 卸围压下弱胶结软岩分数阶蠕变损伤本构模型. 岩土力学. 2024(10): 2937-2948 .
![]() | |
8. |
张世忠,范钢伟,张东升,李文平,范张磊. 应力-损伤-渗流耦合下采动弱胶结覆岩渗透性演化规律. 采矿与安全工程学报. 2024(06): 1230-1240 .
![]() | |
9. |
赵明洲,方娟,辛程鹏. 深部高应力半煤岩巷变形机理及跨界高强支护技术. 煤矿安全. 2023(06): 113-122 .
![]() | |
10. |
王杰,庞建勇,赵正阳,姚韦靖. 软岩巷道中锚杆参数对围岩稳定性的影响分析. 河南城建学院学报. 2023(04): 32-39 .
![]() | |
11. |
李学彬,谷群涛,温国惠,孙兆冰,朱建平,陈明虎,周玉颖. 侏罗系地层巷道淋水顶板破坏机理及治理研究. 煤炭科学技术. 2023(09): 170-179 .
![]() | |
12. |
程志斌,王祖洸,李化敏,王文强. 大同矿区回采巷道覆岩稳定性分类及支护参数优化. 矿业安全与环保. 2023(05): 111-115+123 .
![]() | |
13. |
石垚. 预应力锚杆支护应力场叠加效应试验研究. 能源与环保. 2023(11): 51-60 .
![]() | |
14. |
黄勇,潘夏辉,林志斌. 深埋弱胶结软岩巷道变形破坏规律与控制对策. 煤矿安全. 2022(02): 210-218 .
![]() | |
15. |
相啸宇,杨学瑞,马成甫,任强,张闯,房平,罗波远,孙彦宁. 断层影响下弱胶结软岩工作面停采线合理位置确定. 煤炭技术. 2022(06): 29-33 .
![]() | |
16. |
王波,张海峰,杨张杰,张敦喜,余大军. 工作面断层带静动压分步耦合预注浆加固技术研究. 煤炭科学技术. 2022(06): 186-195 .
![]() | |
17. |
李桂臣,杨森,孙元田,许嘉徽,李菁华. 复杂条件下巷道围岩控制技术研究进展. 煤炭科学技术. 2022(06): 29-45 .
![]() | |
18. |
李景涛,马成甫,张闯,任强,于凤海,计鹏举,周凯. 弱胶结软岩地层大巷保护煤柱宽度的优化. 黑龙江科技大学学报. 2022(05): 582-587 .
![]() | |
19. |
陈康,杨张杰,王福海,王威,王庆牛. 富水弱胶结顶板巷道支护优化设计研究. 煤炭工程. 2022(11): 79-83 .
![]() | |
20. |
郝明,潘夏辉,张勃阳. 淋水条件下弱胶结软岩巷道变形破坏特征与支护技术. 煤矿安全. 2021(12): 219-228 .
![]() |