Advance Search
LI Rui,XIANG Wenting,XU Fengyin,et al. Value and development direction of efficient development of coal-measure natural gas in energy transition[J]. Coal Science and Technology,2025,53(3):60−72. DOI: 10.12438/cst.2024-1493
Citation: LI Rui,XIANG Wenting,XU Fengyin,et al. Value and development direction of efficient development of coal-measure natural gas in energy transition[J]. Coal Science and Technology,2025,53(3):60−72. DOI: 10.12438/cst.2024-1493

Value and development direction of efficient development of coal-measure natural gas in energy transition

More Information
  • Received Date: October 01, 2024
  • Available Online: March 14, 2025
  • Natural gas resources are the transition from fossil to non-fossil energy. Coal-measure natural gas is an essentialpart of natural gas. To give full play to the advantages of coal measure natural gas development in China’s dual-carbon strategy, the value and development direction of efficient development of coal-measure natural gas in energy transition are studied. The results show that China’s coal-measure natural gas resources are diverse, abundant, and widely distributed, providing a solid foundation for large-scale and efficient development. The efficient development of coal-measure natural gas resources is of great significance for promoting low-carbon energy development, which can effectively reduce the proportion of high-carbon fossil energy consumption, help reduce CH4 greenhouse gas emissions, and realize the double effect of increasing production and reducing carbon by combining with CCUS technology. In addition, it plays a significant role in promoting the development of new energy sources, which can guarantee the high-quality peak regulation of new flexible power systems, safer hydrogen production and storage, and synergistic and complementary geothermal resources to improve development efficiency. At present, the overall single-well production of coal-measure gas wells in China is low, and the development technologies remain immature, which constrains the efficient development of coal-associated natural gas. Therefore, this study explores the key directions for advancing coal-measure natural gas development in China, including: vigorously developing deep coalbed methane resources to increase the amount and reserves of deep coalbed methane and overcome the challenges associated with complex deep geological conditions; actively implementing integrated exploration and production of multiple types of coal-measure natural gas to reduce exploration and development costs and enhance single-well productivity; promoting zero CH4 emissions from coal mines to reduce CH4-related greenhouse gas emissions and increase the contribution of mine gas drainage to total natural gas production; strengthening the integration of CCUS with efficient coal-measure natural gas resource development to enable the synergistic advancement of CCUS technology and coal-measure natural gas exploitation; enhancing the integration of geology and engineering in coal-measure natural gas development to improve the compatibility between development technologies and reservoir geological conditions; and accelerating the digitalisation and intelligentisation of coal-measure natural gas development to facilitate the efficient, green, and low-carbon utilisation of these resources through advanced digital and intelligent technologies.

  • [1]
    邹才能,赵群,张国生,等. 能源革命:从化石能源到新能源[J]. 天然气工业,2016,36(1):1−10. doi: 10.3787/j.issn.1000-0976.2016.01.001

    ZOU Caineng,ZHAO Qun,ZHANG Guosheng,et al. Energy revolution:From a fossil energy era to a new energy era[J]. Natural Gas Industry,2016,36(1):1−10. doi: 10.3787/j.issn.1000-0976.2016.01.001
    [2]
    中国石油经济技术研究院. 2050年世界与中国能源展望[R]. 北京,2022:97.
    [3]
    殷建平,张晶. 美国能源对外依存度的变化及其启示[J]. 对外经贸实务,2013(7):23−25. doi: 10.3969/j.issn.1003-5559.2013.07.006

    YIN Jianping,ZHANG Jing. The change of American energy dependence on foreign countries and its enlightenment[J]. Practice in Foreign Economic Relations and Trade,2013(7):23−25. doi: 10.3969/j.issn.1003-5559.2013.07.006
    [4]
    李剑,佘源琦,高阳,等. 中国天然气产业发展形势与前景[J]. 天然气工业,2020,40(4):133−142. doi: 10.3787/j.issn.1000-0976.2020.04.017

    LI Jian,SHE Yuanqi,GAO Yang,et al. Natural gas industry in China:Development situation and prospect[J]. Natural Gas Industry,2020,40(4):133−142. doi: 10.3787/j.issn.1000-0976.2020.04.017
    [5]
    陆家亮,唐红君,孙玉平. 抑制我国天然气对外依存度过快增长的对策与建议[J]. 天然气工业,2019,39(8):1−9.

    LU Jialiang,TANG Hongjun,SUN Yuping. Measures and suggestions on restraining China’s excessive growth of natural gas external dependence[J]. Natural Gas Industry,2019,39(8):1−9.
    [6]
    毕彩芹. 煤系“三气” 六大地质特点[J]. 石油知识,2022(4):12−13. doi: 10.3969/j.issn.1003-4609.2022.4.syzs202204006

    BI Caiqin. Joint mining compatibility of superposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Petroleum Knowledge,2022(4):12−13. doi: 10.3969/j.issn.1003-4609.2022.4.syzs202204006
    [7]
    邹才能,杨智,黄士鹏,等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发,2019,46(3):433−442. doi: 10.11698/PED.2019.03.02

    ZOU Caineng,YANG Zhi,HUANG Shipeng,et al. Resource types,formation,distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development,2019,46(3):433−442. doi: 10.11698/PED.2019.03.02
    [8]
    孙升林,吴国强,曹代勇,等. 煤系矿产资源及其发展趋势[J]. 中国煤炭地质,2014,26(11):1−11. doi: 10.3969/j.issn.1674-1803.2014.11.01

    SUN Shenglin,WU Guoqiang,CAO Daiyong,et al. Mineral resources in coal measures and development trend[J]. Coal Geology of China,2014,26(11):1−11. doi: 10.3969/j.issn.1674-1803.2014.11.01
    [9]
    李贵红. 筠连煤田晚二叠世煤系页岩储层初步评价[J]. 煤炭科学技术,2015,43(10):127−132.

    LI Guihong. Preliminary assessment for shale reservoir of Late Permian coal measures in Junlian Coalfield[J]. Coal Science and Technology,2015,43(10):127−132.
    [10]
    刘翰林,邹才能,尹帅,等. 中国煤系气形成分布、甜点评价与展望[J]. 天然气工业,2024,44(10):1−21. doi: 10.3787/j.issn.1000-0976.2024.10.001

    LIU Hanlin,ZOU Caineng,YIN Shuai,et al. Formation,distribution,dessert evaluation and prospect of coal measures gas in China[J]. China Industrial Economics,2024,44(10):1−21. doi: 10.3787/j.issn.1000-0976.2024.10.001
    [11]
    傅雪海,德勒恰提·加娜塔依,朱炎铭,等. 煤系非常规天然气资源特征及分隔合采技术[J]. 地学前缘,2016,23(3):36−40.

    FU Xuehai,Deleqiati JIANATAYI,ZHU Yanming,et al. Resources characteristics and separated reservoirs' drainage of unconventional gas in coal measures[J]. Earth Science Frontiers,2016,23(3):36−40.
    [12]
    秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

    QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.
    [13]
    国家统计局. 2023年度全国煤层气产量[DB/OL][2024−03−07]. https://data.stats.gov.cn/easyquery.htm?cn=A01.
    [14]
    张建民. 煤层气和相邻煤成气合采探索与研究[C]//中国煤炭学会煤层气专业委员会,中国石油学会石油地质专业委员会. 2008年煤层气学术研讨会论文集. 中石油长城钻探工程公司煤层气开发公司,2008:7.
    [15]
    王超文. 基于U型井的煤层-致密砂岩层叠置气藏合采方式研究[D]. 成都:西南石油大学,2020.

    WANG Chaowen. Study on co-production mode of coal seam-tight sandstone stacked gas reservoir based on U-well[D]. Chengdu:Southwest Petroleum University,2020.
    [16]
    曹代勇,刘亢,刘金城,等. 鄂尔多斯盆地西缘煤系非常规气共生组合特征[J]. 煤炭学报,2016,41(2):277−285.

    CAO Daiyong,LIU Kang,LIU Jincheng,et al. Combination characteristics of unconventional gas in coal measure in the west margin of Ordos Basin[J]. Journal of China Coal Society,2016,41(2):277−285.
    [17]
    庄贵阳. 我国实现“双碳” 目标面临的挑战及对策[J]. 人民论坛,2021(18):50−53. doi: 10.3969/j.issn.1004-3381.2021.18.012

    ZHUANG Guiyang. Challenges and countermeasures for China to achieve the goal of “double carbon”[J]. People’s Tribune,2021(18):50−53. doi: 10.3969/j.issn.1004-3381.2021.18.012
    [18]
    高新伟,李慧珂. 天然气在一次能源中占比上升势不可挡[J]. 中国石化,2023(1):32−35. doi: 10.3969/j.issn.1005-457X.2023.01.012

    GAO Xinwei,LI Huike. The proportion of natural gas in primary energy is inexorable[J]. Sinopec Monthly,2023(1):32−35. doi: 10.3969/j.issn.1005-457X.2023.01.012
    [19]
    汪维,高霁,秦虎,等. 甲烷的温室效应及排放、控制[J]. 城市燃气,2020(4):4−9. doi: 10.3969/j.issn.1671-5152.2020.04.001

    WANG Wei,GAO Ji,QIN Hu,et al. The study on greenhouse effect,emission quantification and control of methane[J]. Urban Gas,2020(4):4−9. doi: 10.3969/j.issn.1671-5152.2020.04.001
    [20]
    蒋珊,罗大清,刘潇潇,等. 油气行业甲烷减排面临的形势及建议[J]. 当代石油石化,2024,32(6):7−10. doi: 10.3969/j.issn.1009-6809.2024.06.002

    JIANG Shan,LUO Daqing,LIU Xiaoxiao,et al. Situation and suggestions of methane emission reduction in oil and gas industry[J]. Petroleum & Petrochemical Today,2024,32(6):7−10. doi: 10.3969/j.issn.1009-6809.2024.06.002
    [21]
    IEA. Global Methane Tracker 2022[R]. Paris:IEA,2022.
    [22]
    刘文革,徐鑫,韩甲业,等. 碳中和目标下煤矿甲烷减排趋势模型及关键技术[J]. 煤炭学报,2022,47(1):470−479.

    LIU Wenge,XU Xin,HAN Jiaye,et al. Trend model and key technologies of coal mine methane emission reduction under carbon neutrality[J]. Journal of China Coal Society,2022,47(1):470−479.
    [23]
    梁运培,李左媛,朱拴成,等. 关闭/废弃煤矿甲烷排放研究现状及减排对策[J]. 煤炭学报,2023,48(4):1645−1660.

    LIANG Yunpei,LI Zuoyuan,ZHU Shuancheng,et al. Research status and reduction strategies of methane emissions from closed/abandoned coal mines[J]. Journal of China Coal Society,2023,48(4):1645−1660.
    [24]
    陈雪. 钙钛矿型复合氧化物催化乏风通入燃煤锅炉混烧性能研究[D]. 太原:太原理工大学,2022.

    CHEN Xue. Study on mixed combustion performance of perovskite-type composite oxide catalytic exhaust air introduced into coal-fired boiler[D]. Taiyuan:Taiyuan University of Technology,2022.
    [25]
    李国富,张遂安,季长江,等. 煤矿区煤层气 “四区联动” 井上下联合抽采模式与技术体系[J]. 煤炭科学技术,2022,50(12):14−25.

    LI Guofu,ZHANG Suian,JI Changjiang,et al. Mechanism and technical system of ground and underground combined drainage of CBM in “four region linkage” in coal mining area[J]. Coal Science and Technology,2022,50(12):14−25.
    [26]
    李沿英,康静文. 煤层气地面开采中潜在的生态环境影响分析[J]. 中国煤炭,2014,40(3):124−127.

    LI Yanying,KANG Jingwen. Analysis of potential ecological influence during grounding mining of coal bed methane[J]. China Coal,2014,40(3):124−127.
    [27]
    杨巍,陈国俊,张铭杰,等. 美国和中国油气系统甲烷排放状况[J]. 油气田环境保护,2012,22(2):50−54,77. doi: 10.3969/j.issn.1005-3158.2012.02.016

    YANG Wei,CHEN Guojun,ZHANG Mingjie,et al. Methane emission status of oil and gas systems in the United States and China[J]. Environmental Protection of Oil & Gas Fields,2012,22(2):50−54,77. doi: 10.3969/j.issn.1005-3158.2012.02.016
    [28]
    孙海涛,舒龙勇,姜在炳,等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术,2022,50(12):1−13.

    SUN Haitao,SHU Longyong,JIANG Zaibing,et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology,2022,50(12):1−13.
    [29]
    孙腾民,刘世奇,汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术,2021,49(11):10−20.

    SUN Tengmin,LIU Shiqi,WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology,2021,49(11):10−20.
    [30]
    刘操,闫江伟,赵春辉,等. 煤中超临界CO2解吸滞后机理及其对地质封存启示[J]. 煤炭学报,2024,49(7):3154−3166.

    LIU Cao,YAN Jiangwei,ZHAO Chunhui,et al. Hysteresis mechanism of supercritical CO2 desorption in coal and its implication for carbon geo-sequestration[J]. Journal of China Coal Society,2024,49(7):3154−3166.
    [31]
    袁亮. 破解深部煤炭开采重大科技难题的思考与建议[J]. 科技导报,2016,34(2):1.

    YUAN Liang. Thoughts and suggestions on solving major scientific and technological problems in deep coal mining[J]. Science & Technology Review,2016,34(2):1.
    [32]
    刘延锋,李小春,白冰. 中国CO2煤层储存容量初步评价[J]. 岩石力学与工程学报,2005,24(16):2947−2952. doi: 10.3321/j.issn:1000-6915.2005.16.023

    LIU Yanfeng,LI Xiaochun,BAI Bing. Preliminary estimation of CO2 storage capacity of coalbeds in China[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2947−2952. doi: 10.3321/j.issn:1000-6915.2005.16.023
    [33]
    桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探,2018,46(5):1−9. doi: 10.3969/j.issn.1001-1986.2018.05.001

    SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1−9. doi: 10.3969/j.issn.1001-1986.2018.05.001
    [34]
    叶建平,冯三利,范志强,等. 沁水盆地南部注二氧化碳提高煤层气采出率微型先导性试验研究[J]. 石油学报,2007,28(4):77−80. doi: 10.3321/j.issn:0253-2697.2007.04.015

    YE Jianping,FENG Sanli,FAN Zhiqiang,et al. Micro-pilot test for enhanced coalbed methane recovery by injecting carbon dioxide in south part of Qinshui Basin[J]. Acta Petrolei Sinica,2007,28(4):77−80. doi: 10.3321/j.issn:0253-2697.2007.04.015
    [35]
    CONNELL L D,PAN Z,CAMILLERI M,et al. Description of a CO2 enhanced coal bed methane field trial using a multi-lateral horizontal well[J]. International Journal of Greenhouse Gas Control,2014,26:204−219. doi: 10.1016/j.ijggc.2014.04.022
    [36]
    黎力,梁卫国,李治刚等. 注热CO2驱替增产煤层气试验研究[J]. 煤炭学报,2017,42(8):2044−2050.

    LI Li,LIANG Weiguo,LI Zhigang,et al. Experimental investigation on enhancing coalbed methane recovery by injecting high temperature CO2[J]. Journal of China Sciety,2017,42(8):2044−2050.
    [37]
    姜睿. 二氧化碳封存技术在油气行业应用进展[J]. 当代石油石化,2022,30(2):34−38. doi: 10.3969/j.issn.1009-6809.2022.02.007

    JIANG Rui. Progress of CO2 sequestration technique application in oil and gas industry[J]. Petroleum & Petrochemical Today,2022,30(2):34−38. doi: 10.3969/j.issn.1009-6809.2022.02.007
    [38]
    桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451.

    SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.
    [39]
    王海柱,李根生,郑永,等. 超临界CO2压裂技术现状与展望[J]. 石油学报,2020,41(1):116−126. doi: 10.7623/syxb202001011

    WANG Haizhu,LI Gensheng,ZHENG Yong,et al. Research status and prospects of supercritical CO2 fracturing technology[J]. Acta Petrolei Sinica,2020,41(1):116−126. doi: 10.7623/syxb202001011
    [40]
    曹运兴,张新生,张军胜,等. CO2相变致裂煤的显微构造特征与成因机制[J]. 煤田地质与勘探,2023,51(2):137−145. doi: 10.12363/issn.1001-1986.22.07.0570

    CAO Yunxing,ZHANG Xinsheng,ZHANG Junsheng,et al. Characteristics and formation mechanisms of microstructures in coal treated with CO2 phase transition fracturing[J]. Coal Geology & Exploration,2023,51(2):137−145. doi: 10.12363/issn.1001-1986.22.07.0570
    [41]
    张军建,常象春,吕大炜,等. 双碳目标下煤层发育区CO2地质封存研究与评价[J]. 煤炭科学技术,2023,51(S1):206−214. doi: 10.12438/cst.2022-0538

    ZHANG Junjian,CHANG Xiangchun,LV Dawei,et al. Carbon dioxide geological system in coal seam development area under the premise of double carbon target[J]. Coal Science and Technology,2023,51(S1):206−214. doi: 10.12438/cst.2022-0538
    [42]
    胡书勇,胡欣芮,李勇凯,等. 枯竭气藏型储气库CO2作垫层气的可行性研究[J]. 油气藏评价与开发,2018,8(5):56−59. doi: 10.3969/j.issn.2095-1426.2018.05.009

    HU Shuyong,HU Xinrui,LI Yongkai,et al. Feasibility analysis about taking CO2 as cushion gas for gas storage rebuilt upon depleted gas reservoirs[J]. Reservoir Evaluation and Development,2018,8(5):56−59. doi: 10.3969/j.issn.2095-1426.2018.05.009
    [43]
    何润民,罗旻海,李森圣,等. 单井气藏改建储气库的经济评价方法:以川西北地区WC1井为例[J]. 天然气技术与经济,2023,17(1):82−86.

    HE Runmin,LUO Minhai,LI Sensheng,et al. Economic evaluation method of rebuilding single well into underground gas storage:A case study on Well WC1 in the northwestern Sichuan Basin[J]. Natural Gas Technology and Economy,2023,17(1):82−86.
    [44]
    任大伟,侯金鸣,肖晋宇,等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力,2023,56(8):17−25.

    REN Dawei,HOU Jinming,XIAO Jinyu,et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power,2023,56(8):17−25.
    [45]
    李琼慧,王彩霞. 从电力发展“十三五” 规划看新能源发展[J]. 中国电力,2017,50(1):30−36. doi: 10.11930/j.issn.1004-9649.2017.01.030.07

    LI Qionghui,WANG Caixia. Analysis on new energy development based on the 13th five-year electric power planning[J]. Electric Power,2017,50(1):30−36. doi: 10.11930/j.issn.1004-9649.2017.01.030.07
    [46]
    郭艳艳,张保淑. 煤层气:从“夺命瓦斯” 到“澎湃动力”[J]. 新能源经贸观察,2018(8):30−31.

    GUO Yanyan,ZHANG Baoshu. Coalbed methane:From “desperate gas” to “surging power”[J]. Energy Outlook,2018(8):30−31.
    [47]
    邵剑波. 双碳背景下煤矿瓦斯综合利用发展现状及规划[A]. 中国城市燃气协会安全管理工作委员会. 2022年第五届燃气安全交流研讨会论文集(上册)[C]. 中国城市燃气协会安全管理工作委员会:中国城市燃气协会,2023:225−229.
    [48]
    杨建红. 中国天然气市场可持续发展分析[J]. 天然气工业,2018,38(4):145−152. doi: 10.3787/j.issn.1000-0976.2018.04.017

    YANG Jianhong. Analysis of sustainable development of natural gas market in China[J]. Natural Gas Industry,2018,38(4):145−152. doi: 10.3787/j.issn.1000-0976.2018.04.017
    [49]
    吕建中. 重新认识氢能源:解读《氢能产业发展中长期规划(2021—2035)》[J]. 中国石油石化,2022(8):42−43. doi: 10.3969/j.issn.1671-7708.2022.08.012

    LYU Jianzhong. Re-understanding hydrogen energy:Interpretation of the medium and long-term plan for the development of hydrogen energy industry (2021-2035)[J]. China Petrochem,2022(8):42−43. doi: 10.3969/j.issn.1671-7708.2022.08.012
    [50]
    符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭,2019,45(10):15−21. doi: 10.3969/j.issn.1006-530X.2019.10.004

    FU Guanyun. The status and role of hydrogen energy in China’s energy transformation[J]. China Coal,2019,45(10):15−21. doi: 10.3969/j.issn.1006-530X.2019.10.004
    [51]
    孟翔宇,陈铭韵,顾阿伦,等. “双碳” 目标下中国氢能发展战略[J]. 天然气工业,2022,42(4):156−179. doi: 10.3787/j.issn.1000-0976.2022.04.015

    MENG Xiangyu,CHEN Mingyun,GU Alun,et al. China’s hydrogen development strategy in the context of double carbon targets[J]. Natural Gas Industry,2022,42(4):156−179. doi: 10.3787/j.issn.1000-0976.2022.04.015
    [52]
    单彤文,宋鹏飞,李又武,等. 制氢、储运和加注全产业链氢气成本分析[J]. 天然气化工(C1化学与化工),2020,45(1):85−90,96.

    SHAN Tongwen,SONG Pengfei,LI Youwu,et al. Cost analysis of hydrogen from the perspective of the whole industrial chain of production,storage,transportation and refueling[J]. Natural Gas Chemical Industry,2020,45(1):85−90,96.
    [53]
    常宏岗. 天然气制氢技术及经济性分析[J]. 石油与天然气化工,2021,50(4):53−57. doi: 10.3969/j.issn.1007-3426.2021.04.008

    CHANG Honggang. Technical and economic analysis of hydrogen production from natural gas[J]. Chemical Engineering of Oil & Gas,2021,50(4):53−57. doi: 10.3969/j.issn.1007-3426.2021.04.008
    [54]
    ABREU J F,COSTA A M,COSTA P V M,et al. Carbon net zero transition:A case study of hydrogen storage in offshore salt cavern[J]. Journal of Energy Storage,2023,62:106818. doi: 10.1016/j.est.2023.106818
    [55]
    YOUSEFI S H,GROENENBERG R,KOORNNEEF J,et al. Techno-economic analysis of developing an underground hydrogen storage facility in depleted gas field:A Dutch case study[J]. International Journal of Hydrogen Energy,2023,48(74):28824−28842. doi: 10.1016/j.ijhydene.2023.04.090
    [56]
    KUMAR S,REGASSA JUFAR S,KUMAR S,et al. Underground hydrogen storage and its roadmap and feasibility in India toward Net-Zero target for global decarbonization[J]. Fuel,2023,350:128849. doi: 10.1016/j.fuel.2023.128849
    [57]
    BARISON E,DONDA F,MERSON B,et al. An insight into underground hydrogen storage in Italy[J]. Sustainability,2023,15(8):6886. doi: 10.3390/su15086886
    [58]
    CHEN F X,MA Z W,NASRABADI H,et al. Capacity assessment and cost analysis of geologic storage of hydrogen:A case study in Intermountain-West Region USA[J]. International Journal of Hydrogen Energy,2023,48(24):9008−9022. doi: 10.1016/j.ijhydene.2022.11.292
    [59]
    吴奇之. “地质氢能电池”:氢气储存于煤炭将有助于推动清洁能源和经济发展[EB/OL]. (2023−07−06)[2024−03−07]. http://www.sinopecnews.com.cn/xnews/content/2023-07/06/content_7070209.html.
    [60]
    王双明,刘浪,赵玉娇,等. “双碳” 目标下赋煤区新能源开发:未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59−79.

    WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal-endowed areas under the target of “double carbon”:A new path for transformation and upgrading of coal mines in the future[J]. Coal Science and Technology,2023,51(1):59−79.
    [61]
    张吉雄,汪集暘,周楠,等. 深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报,2022,44(10):1682−1693. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210007

    ZHANG Jixiong,WANG Jiyang,ZHOU Nan,et al. Collaborative mining system of geothermal energy and coal resources in deep mines[J]. Chinese Journal of Engineering,2022,44(10):1682−1693. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210007
    [62]
    张发旺,赵淼,李胜涛,等. 废弃煤矿山地热资源开发利用研究[J]. 中国地质,2024,51(6):1883−1894. doi: 10.12029/gc20230418002

    ZHANG Fawang,ZHAO Miao,LI Shengtao,et al. Research on the development and utilization of geothermal resources in abandoned coal mines[J]. Geology in China,2024,51(6):1883−1894. doi: 10.12029/gc20230418002
    [63]
    蒋曙鸿,师素珍,赵康,等. 深部煤及煤层气勘探前景及发展方向[J]. 科技导报,2023,41(7):106−113.

    JIANG Shuhong,SHI Suzhen,ZHAO Kang,et al. Prospect and development direction of deep coal and coalbed methane exploration[J]. Science & Technology Review,2023,41(7):106−113.
    [64]
    张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.

    ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
    [65]
    张越,于姣姣,吴晓丹,等. 高产煤层气井合理自喷阶段划分方法研究[J]. 中国石油和化工标准与质量,2021,41(12):144−145. doi: 10.3969/j.issn.1673-4076.2021.12.071

    ZHANG Yue,YU Jiaojiao,WU Xiaodan,et al. Study on reasonable spontaneous injection stage division method of high-yield coalbed methane wells[J]. China Petroleum and Chemical Standard and Quality,2021,41(12):144−145. doi: 10.3969/j.issn.1673-4076.2021.12.071
    [66]
    徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14. doi: 10.12363/issn.1001-1986.21.12.0736

    XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14. doi: 10.12363/issn.1001-1986.21.12.0736
    [67]
    宋儒,苏育飞,陈小栋. 山西省深部煤系“三气” 资源勘探开发进展及研究[J]. 中国煤炭地质,2019,31(1):53−58. doi: 10.3969/j.issn.1674-1803.2019.01.10

    SONG Ru,SU Yufei,CHEN Xiaodong. Exploration and exploitation progress and study on deep coal measures “triple-gas” resources in Shanxi Province[J]. Coal Geology of China,2019,31(1):53−58. doi: 10.3969/j.issn.1674-1803.2019.01.10
    [68]
    ZHOU F B,XIA T Q,WANG X X,et al. Recent developments in coal mine methane extraction and utilization in China:A review[J]. Journal of Natural Gas Science and Engineering,2016,31:437−458. doi: 10.1016/j.jngse.2016.03.027
    [69]
    黄启福. 钯基钴酸镍催化燃烧低浓度甲烷的研究[D]. 合肥:中国科学技术大学,2018.

    HUANG Qifu. Study on catalytic combustion of low concentration methane with palladium-based nickel cobaltate[D]. Hefei:University of Science and Technology of China,2018.
    [70]
    刘文革,张斌川,刘馨,等. 中国煤矿区甲烷零排放[J]. 中国煤层气,2005,2(2):6−9,40. doi: 10.3969/j.issn.1672-3074.2005.02.002

    LIU Wenge,ZHANG Binchuan,LIU Xin,et al. Zero emission of coal mine methane in China[J]. China Coalbed Methane,2005,2(2):6−9,40. doi: 10.3969/j.issn.1672-3074.2005.02.002
    [71]
    熊鹏辉,索根喜,孙晨光,等. 煤矿瓦斯“零排放” 工程示范及标准研究[J]. 中国煤层气,2017,14(6):3−5.

    XIONG Penghui,SUO Genxi,SUN Chenguang,et al. Engineering demonstration of zero CMM emission and research on related standard[J]. China Coalbed Methane,2017,14(6):3−5.
    [72]
    ZHANG Z E,PAN S Y,LI H,et al. Recent advances in carbon dioxide utilization[J]. Renewable and Sustainable Energy Reviews,2020,125:109799. doi: 10.1016/j.rser.2020.109799
    [73]
    中国碳捕集利用与封存年度报告[R]. 北京:全球碳捕集与封存研究院,2023.
    [74]
    刘大锰,贾奇锋,蔡益栋. 中国煤层气储层地质与表征技术研究进展[J]. 煤炭科学技术,2022,50(1):196−203. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201019

    LIU Dameng,JIA Qifeng,CAI Yidong. Research progress on coalbed methane reservoir geology and characterization technology in China[J]. Coal Science and Technology,2022,50(1):196−203. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201019
    [75]
    陆朝晖,贾云中,汤积仁,等. 深层页岩剪切滑移裂缝渗透率变化规律[J]. 天然气工业,2021,41(1):146−153.

    LU Zhaohui,JIA Yunzhong,TANG Jiren,et al. Evolution laws of fracture permeability of deep shale in the process of shear slip[J]. Natural Gas Industry,2021,41(1):146−153.
    [76]
    刘永成,张磊,潘建钟,等. 我国煤层气智能化开发研究现状及展望[J/OL]. 煤炭科学技术,1−11[2024−03−07]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240821.0835.002.html.

    LIU Yongcheng,ZHANG Lei,PAN Jianzhong,et al. Research Status and Prospect of Coalbed Methane Intelligent Extraction in China[J/OL]. Coal Science and Technology,1−11[2024−03−07]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240821.0835.002.html.
    [77]
    黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.

    HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
  • Related Articles

    [1]HU Yachao, XIONG Zuqiang, WANG Chun, WANG Cheng. Research on high-efficiency sealing material and technology of coal roof deep-hole pre-splitting blasting[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(4): 30-36. DOI: 10.13199/j.cnki.cst.2021-0357
    [2]YAO Hongsheng, YANG Song, LIU Xiao, SHEN Jian, ZHANG Zhanlong. Research on efficiency-enhancing development technology of multiple fracturing in low-efficiency CBM wells[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 121-129.
    [3]ZHANG Qiang, WANG Cong, TIAN Ying. Research of high efficient crushing methods for coal rock[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(2): 163-176. DOI: 10.13199/j.cnki.cst.2021.02.020
    [4]YAO Yafeng, ZHANG Jie, HAN Jian, HOU Hong. Development and application of high efficiency drilling equipment inhard-soft composite coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (4).
    [5]Wang Senquan. Study on safety and high efficient mining technology of irregular fully-mechanized top coal caving mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (10).
    [6]Li Ximeng, Liu Changyou, Syd S.Peng. Mining equipment development status of fast advance longwall face in Us[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (1).
    [7]HU Qian-ting. Discussion on technical access to realize safety and high efficient mining in outburst mine[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (1).
    [8]Status and Idea on Safety and High Efficient and Green Development of China Coal Resources[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (8).
    [9]Gas Drainage Technology of Mining Fracture Developed Zone in High Gassy and Thick Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (5).
    [10]Modernized Safety and High Efficient Mine Mode and Equipment Features in Shenhua Group[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).

Catalog

    Article views (54) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return