Citation: | ZHANG Lei,XU Fengyin,TONG Jiangnan,et al. Research and application of micro-scale fracture prediction technology for deep coalbed methane based on five-dimensional seismic data[J]. Coal Science and Technology,2025,53(3):186−198. DOI: 10.12438/cst.2025-0020 |
During the large-scale development of deep coalbed methane in the Daji block on the eastern edge of Ordos Basin, using horizontal wells combined with large-scale volume fracturing, some wells experienced fracturing interference under similar fracturing techniques and technical parameters, significantly affecting the fracturing transformation and gas production outcomes. Through precise 3D seismic interpretation in the early stage, it was found that faults were not developed in the block, suggesting that the development of local micro-scale fractures might be a significant factor causing fracturing interference in horizontal wells. Focusing on the deep No. 8 coal seam in the study area, we rely on high-quality 3D seismic data characterized by “two wide and one high” features. Through OVT (Offset Vector Tile)domain processing, we obtained five-dimensional seismic data encompassing time, space (3D coordinates), offset (or source-receiver distance), and azimuth. For the first time, we employed azimuthal statistics to investigate the development degree, orientation, and developmental stages of micro-scale fractures. The research findings indicate that micro-scale fractures are generally well-developed in the study area, with five major fracture zones observed, and the degree of micro-scale fracture development is higher in the southern part compared to the northern part. The development of fractures is controlled by two phases of regional tectonic activity, exhibiting two distinct planar distribution directions. Specifically, fractures oriented in the near EW and NW directions were formed during the Yanshanian tectonic activity, while fractures oriented in the near SN and NE directions were formed during the Himalayan tectonic activity. By integrating regional tectonic stress fields from different periods, field outcrops, imaging logging, and array sonic logging data, we verified the reliability of our research findings on the degree and direction of fracture development. Applying these micro-fracture prediction results guided the optimization and implementation of the horizontal well fracturing plan in the study area in later stages, leading to a significant reduction in the interference ratio from 14.58% in 2023 to 5.23%. Meanwhile, statistics show that the average daily gas production for wells put into production in 2023 was 6.7×104 m3, and for wells put into production in 2024, it was 7.5×104 m3, indicating a significant reduction in fracturing interference and a continuous improvement in development effectiveness. This prediction method can provide valuable insights for predicting micro-scale fractures in deep coalbed methane blocks with similar geological conditions.
[1] |
张雷,边利恒,侯伟,等. 深部煤储层孔隙结构特征及其勘探意义——以鄂尔多斯盆地东缘大宁—吉县区块为例[J]. 石油学报,2023,44(11):1867−1878. doi: 10.7623/syxb202311009
ZHANG Lei,BIAN Liheng,HOU Wei,et al. Pore structure characteristics of deep coal reservoirs and their exploration significance:a case study of the Daning-Jixian block on the eastern edge of the Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1867−1878. doi: 10.7623/syxb202311009
|
[2] |
李曙光,王红娜,徐博瑞,等. 大宁−吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165−172. doi: 10.12363/issn.1001-1986.21.12.0800
LI Shuguang,WANG Hongna,XU Borui,et al. Influencing factors on gas production effect of acid fractured CBM Wells in deep coal seam of Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(3):165−172. doi: 10.12363/issn.1001-1986.21.12.0800
|
[3] |
邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1−14.
ZOU Caineng,ZHAO Qun,CONG Lianzhu,et al. Development progress,potential and prospect of shale gas in China[J]. Natural Gas Industry,2021,41(1):1−14.
|
[4] |
刘德华,肖佳林,关富佳. 页岩气开发技术现状及研究方向[J]. 石油天然气学报,2011,33(1):119−123,169. doi: 10.3969/j.issn.1000-9752.2011.01.027
LIU Dehua,XIAO Jialin,GUAN Fujia. Current situation and research direction of shale gas development[J]. Journal of Oil and Gas Technology,2011,33(1):119−123,169. doi: 10.3969/j.issn.1000-9752.2011.01.027
|
[5] |
董大忠,邹才能,杨桦,等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报,2012,33(S1):107−114. doi: 10.7623/syxb2012S1013
DONG Dazhong,ZOU Caineng,YANG Hua,et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica,2012,33(S1):107−114. doi: 10.7623/syxb2012S1013
|
[6] |
MACBETH C,LI X Y. AVD:An emerging new marine technology for reservoir characterization:Acquisition and application[J]. Geophysics,1999,64(4):1153−1159. doi: 10.1190/1.1444622
|
[7] |
印兴耀,马正乾,向伟,等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅰ):裂缝储层岩石物理理论[J]. 石油物探,2022,61(2):183−204. doi: 10.3969/j.issn.1000-1441.2022.02.001
YIN Xingyao,MA Zhengqian,XIANG Wei,et al. Review of fracture prediction driven by the seismic rock physics theory(Ⅰ):Effective anisotropic seismic rock physics theory[J]. Geophysical Prospecting for Petroleum,2022,61(2):183−204. doi: 10.3969/j.issn.1000-1441.2022.02.001
|
[8] |
印兴耀,马正乾,宗兆云,等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅱ):五维地震裂缝预测技术[J]. 石油物探,2022,61(3):373−391. doi: 10.3969/j.issn.1000-1441.2022.03.001
YIN Xingyao,MA Zhengqian,ZONG Zhaoyun,et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅱ):Fracture prediction from five-dimensional seismic data[J]. Geophysical Prospecting for Petroleum,2022,61(3):373−391. doi: 10.3969/j.issn.1000-1441.2022.03.001
|
[9] |
刘俊州,韩磊,时磊,等. 致密砂岩储层多尺度裂缝地震预测技术:以川西XC 地区为例[J]. 石油与天然气地质,2021,42(3):747−754. doi: 10.11743/ogg20210319
LIU Junzhou,HAN Lei,SHI Lei,et al. Seismic prediction of tight sandstone reservoir fractures in XC area western Sichuan Basin[J]. Oil & Gas Geology,2021,42(3):747−754. doi: 10.11743/ogg20210319
|
[10] |
徐丽萍,杨勤勇. 多波多分量地震技术发展与展望[J]. 勘探地球物理进展,2002,25(3):47−52.
XU Liping,YANG Qinyong. Development and prospect of multi wave and multi component seismic technology[J]. Advances in Exploration Geophysics,2002,25(3):47−52.
|
[11] |
王光杰,陈东,赵爱华,等. 多波多分量地震探测技术[J]. 地球物理学进展,2000,15(1):54−60. doi: 10.3969/j.issn.1004-2903.2000.01.004
WANG Guangjie,CHEN Dong,ZHAO Aihua,et al. Multi-component seismic exploration[J]. Progress in Geophysics,2000,15(1):54−60. doi: 10.3969/j.issn.1004-2903.2000.01.004
|
[12] |
杨柳,沈亚,管俊亚,等. 多维数据裂缝检测技术探索及应用[J]. 石油地球物理勘探,2016,51(S1):58−63.
YANG Liu,SHEN Ya,GUAN Junya,et al. Fracture detection based on multi-dimension data[J]. Oil Geophysical Prospecting,2016,51(S1):58−63.
|
[13] |
周路,周江辉,代瑞雪,等. OVT 域五维地震属性在双鱼石地区栖霞组裂缝预测中的应用[J]. 地学前缘,2023,30(1):213−228.
ZHOU Lu,ZHOU Jianghui,DAI Ruixue,et al. Application of 5-dimensional seismic attributes in OVT domain in fracture prediction of Qixia Formation in shuangyushiarea[J]. Earth Science Frontiers,2023,30(1):213−228.
|
[14] |
陈志刚,李丰,王霞,等. 叠前各向异性强度属性在乍得Bongor盆地P潜山 裂缝性储层预测中的应用[J]. 地球物理学报,2018,61(11):4625−4634. doi: 10.6038/cjg2018L0640
CHEN Zhigang,LI Feng,WANG Xia,et al. Application of prestack anisotropic intensity attribute in prediction of P Buried hill fractured reservoir in Bongor Basin,Chad[J]. Chinese Journal of Geophysics,2018,61(11):4625−4634. doi: 10.6038/cjg2018L0640
|
[15] |
XU X Y,WANG W F,LI X S,et al. Sequence control factors and hydrocarbon accumulation pattern of Es3 in Kenxi slope zone of Bohai Bay basin[J]. Journal of Coastal Research,2019,94:91−95 doi: 10.2112/SI94-017.1
|
[16] |
戴俊生,冯阵东,刘海磊,等. 几种储层裂缝评价方法的 适用条件分析[J]. 地球物理学进展,2011,26(4):1234−1242. doi: 10.3969/j.issn.1004-2903.2011.04.014
DAI Junsheng,FENG Zhendong,LIU Hailei,et al. Analysis for the applicable conditions of several methods of reservoir fracture evaluation[J]. Progress in Geophysics,2011,26(4):1234−1242. doi: 10.3969/j.issn.1004-2903.2011.04.014
|
[17] |
曾勇,屈永华,宋金宝. 煤层裂隙系统及其对煤层气产出的影响[J]. 江苏地质,2000,24(2):91−94.
ZENG Yong,QU Yonghua,SONG Jingbao. The coal seam system of fissures and their influence on the occurrence of coal Seams[J]. Jiangsu Geology,2000,24(2):91−94.
|
[18] |
徐凤银,甄怀宾,李曙光,等. 深部煤层气储层改造技术迭代升级历史与发展方向:以鄂尔多斯盆地东缘大吉区块为例[J/OL]. 煤炭科学技术,2025:1−27[2025−01−23]. https://link.cnki.net/urlid/11.2402.TD.20250123.1055.002.
XU Fengyin,ZHEN Huaibin,LI Shuguang,et al. History and development direction of iterative upgrading of deep coalbed methane reservoir reconstruction technology:Taking Daji Block in the eastern edge of the Ordos Basin as an example [J/OL]. Journal of Coal Science and Technology,2025:1−27[2025−01−23]. https://link.cnki.net/urlid/11.2402.TD.20250123.1055.002.
|
[19] |
巢海燕,李泽,甄怀宾,等. 大宁-吉县区块深部煤层气水平井压裂干扰行为及其机理 [J/OL]. 煤炭科学技术,2024:1−16 [2024−12−06]. https://link.cnki.net/urlid/11.2402.TD.20241206.1017.00.
CHAO Haiyan,LI Ze,ZHEN Huaibin,et al. Interference behavior and mechanism of deep coalbed methane horizontal well fracturing in Daning-Jixian block [J/OL]. Journal of Coal Science and Technology,2024:1−16 [2024−12−06]. https://link.cnki.net/urlid/11.2402.TD.20241206.1017.00.
|
[20] |
王文东,喻文锋,高攀,等. 页岩气井间压裂窜扰机理及影响规律[J]. 天然气工业,2024,44(1):128−138. doi: 10.3787/j.issn.1000-0976.2024.01.012
WANG Wendong,YU Wenfeng,GAO Pan,et al. Mechanism and influence law of inter-well fracturing interference in shale gas wells[J]. Natural Gas Industry,2024,44(1):128−138. doi: 10.3787/j.issn.1000-0976.2024.01.012
|
[21] |
段贵府,牟建业,闫骁伦,等. 川南深层页岩气水平井压裂窜扰主控因素及诱导机制[J]. 中国石油勘探,2024,29(3):146−158. doi: 10.3969/j.issn.1672-7703.2024.03.013
DUAN Guifu,MOU Jianye,YAN Xiaolun,et al. Key controlling factors and inducement mechanism of fracture-driven interactions(FDIs) between deep shale gas horizontal wells in southern Sichuan Basin[J]. China Petroleum Exploration,2024,29(3):146−158. doi: 10.3969/j.issn.1672-7703.2024.03.013
|
[22] |
王霞,李丰,张延庆,等. 五维地震数据规则化及其在裂缝表征中的应用[J]. 石油地球物理勘探,2019,54(4):844−852.
WANG Xia,LI Feng,ZHANG Yanqing,et al. 5D seismic data regularization and application in fracture characterization[J]. Oil Geophysical Prospecting,2019,54(4):844−852.
|
[23] |
魏欣伟,薛姣,罗霞. 基于OVT域地震数据的叠前AVOA裂缝密度反演[J]. 石油物探,2021,60(5):816−825. doi: 10.3969/j.issn.1000-1441.2021.05.012
WEI Xinwei,XUE Jiao,LUO Xia. Fracture density estimation using an amplitude-versus-offset-and-azimuth inversion based on prestack seismic data in the offset vector tile domain[J]. Geophysical Prospecting for Petroleum,2021,60(5):816−825. doi: 10.3969/j.issn.1000-1441.2021.05.012
|
[24] |
苑书金,于常青. 各向异性介质中的弹性阻抗及其反演[J]. 地球物理学进展,2006,21(2):520−523. doi: 10.3969/j.issn.1004-2903.2006.02.028
YUAN Shujin,YU Changqing. Elastic impedance and seismic inversion in anisotropic media[J]. Progress in Geophysics,2006,21(2):520−523. doi: 10.3969/j.issn.1004-2903.2006.02.028
|
[25] |
李爱山,印兴耀,张繁昌,等. VTI介质中的弹性阻抗与参数提取[J]. 地球物理学进展,2008,23(6):1878−1885.
LI Aishan,YIN Xingyao,ZHANG Fanchang,et al. Elastic impedance in VTI media and parameter extraction[J]. Progress in Geophysics,2008,23(6):1878−1885.
|
[26] |
陈怀震,印兴耀,张金强,等. 基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法研究[J]. 地球物理学报,2014,57(10):3431−3441. doi: 10.6038/cjg20141029
CHEN Huaizhen,YIN Xingyao,ZHANG Jinqiang,et al. Seismic inversion for fracture rock physics parameters using azimuthally anisotropic elastic impedance[J]. Chinese Journal of Geophysics,2014,57(10):3431−3441. doi: 10.6038/cjg20141029
|
[27] |
罗辑,吴国忱,宗兆云,等. 基于方位弹性阻抗反演的裂缝型储层流体检测方法[J]. 石油地球物理勘探,2015,50(6):1154−1165.
LUO Ji,WU Guochen,ZONG Zhaoyun,et al. Fluid identifica-tion in fractured reservoirs based on azimuthal elastic impedance inversion[J]. Oil Geophysical Prospecting,2015,50(6):1154−1165.
|
[28] |
SENA A G. Seismic traveltime equations for azimuthally anisotropic and isotropic media:Estimation of interval elastic properties[J]. Geophysics,1991,56(12):2090−2101. doi: 10.1190/1.1443021
|
[29] |
WINKLER K W. Laboratory observations of azimuthal velocity variations caused by borehole stress concentrations[C]//SEG Technical Program Expanded Abstracts 1994. Society of Exploration Geophysicists,1994:1133−1135.
|
[30] |
SENGUPTA M K. Sensitivity analysis of amplitude versus offset (AVO) method[C]//SEG Technical Program Expanded Abstracts 1987. Society of Exploration Geophysicists,1987:1679.
|
[31] |
郝守玲,赵群. 裂缝介质对P波方位各向异性特征的影响——物理模型研究[J]. 勘探地球物理进展,2004,27(3):6.
HAO Shouling,ZHAO Qun. The effect of fractured medium on P wave azimuthal anisotorpy:A Physical model study[J]. Progress in Exploration Geophysics,2004,27(3):189−194.
|
[32] |
王霞,张延庆,李丰,等. 方位统计法各向异性表征技术研究[C]//中国石油学会(CPS),国际勘探地球物理学家学会(SEG). CPS/SEG北京2018国际地球物理会议暨展览电子论文集. 北京:中国学术期刊(光盘版)电子杂志社,2018:154−157.
|
[33] |
童姜楠,孙雄伟,王峰,等. 智能相控波形指示反演技术及其在煤系地层薄砂岩预测中的应用[J]. 石油物探,2025,64(1):129−137 . doi: 10.12431/issn.1000-1441.2025.64.01.010
TONG Jiangnan,SUN Xiongwei,WANG Feng,et al. Intelligent phased waveform indication inversion technology and its application in predicting thin sandstone in coal-bearing strata[J]. Petroleum Geophysical Prospecting,2025,64(1):129−137. doi: 10.12431/issn.1000-1441.2025.64.01.010
|
[34] |
印兴耀,张洪学,宗兆云. OVT数据域五维地震资料解释技术研究现状与进展[J]. 石油物探,2018,57(2):155−178. doi: 10.3969/j.issn.1000-1441.2018.02.001
YIN Xingyao,ZHANG Hongxue,ZONG Zhaoyun. Research status and progress of 5D seismic data interpretation in OVT domain[J]. Geophysical Prospecting for Petroleum,2018,57(2):155−178. doi: 10.3969/j.issn.1000-1441.2018.02.001
|
[35] |
周健,陈勉,金衍,等. 压裂中天然裂缝剪切破坏机制研究[J]. 岩石力学与工程学报,2008,27(S1):2637−2641.
ZHOU Jian,CHEN Mian,JIN Yan,et al. Mechanism study of shearing slippage damage of natural fracture in hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(S1):2637−2641.
|
[36] |
侯振坤,杨春和,王磊,等. 大尺寸真三轴页岩水平井 水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(2):407−414.
HOU Zhenkun,YANG Chunhe,WANG Lei,et al. Physical simulation experiment and fracture extension law analysis of hydraulic fracturing in large-scale true triaxial shale horizontal wells[J]. Rock and Soil Mechanics,2016,37(2):407−414.
|
[37] |
黄沛铭. 库车坳陷博孜−大北区带超深致密砂岩储层裂缝特征与定量预测[D]. 徐州:中国矿业大学,2023.
HUANG Peiming. Fracture characteristics and quantitative prediction of ultra-deep tight sandstone reservoirs in the Bozi-Dabei zone of the Kuqa Depression[D]. Xuzhou:China University of Mining and Technology,2023.
|
[38] |
孟庆修. 塔北隆起三道桥古潜山白云岩储层裂缝分布规律与主控 因素研究[D]. 北京:中国地质大学,2023.
MENG Qingxiu. Study on the distribution pattern and main controlling factors of fractures in dolomite reservoirs of the Sandaoqiao Buried Hill in the Tabei Uplift[D]. Beijing:China University of Geosciences,2023.
|
[39] |
李雨桐,杨西燕,范存辉. 富有机质页岩天然裂缝表征研究进展[J]. 石油地质与工程,2023,37(1):32−38. doi: 10.3969/j.issn.1673-8217.2023.01.006
LI Yutong,YANG Xiyan,FAN Cunhui. Progress in characterization of natural fractures in organic-rich shale[J]. Petroleum Geology and Engineering,2023,37(1):32−38. doi: 10.3969/j.issn.1673-8217.2023.01.006
|
[40] |
杨秀春,屈争辉,姜波,等. 山西大宁−吉县地区中新生代构造特征及其演化[J]. 中国煤炭地质,2013,25(5):1−6. doi: 10.3969/j.issn.1674-1803.2013.05.01
YANG Xiuchun,QU Zhenghui,JIANG Bo,et al. Mesozoic-Cenozoic structural features and their evolution in Daning-Jixian area,Shanxi[J]. Coal Geology of China,2013,25(5):1−6. doi: 10.3969/j.issn.1674-1803.2013.05.01
|
[1] | ZHANG Xiaoyu, LI Bobo, LI Jianhua, JIA Lidan, DING Yunna, SONG Haosheng. Anisotropic permeability model considering gas and water adsorption and stress[J]. COAL SCIENCE AND TECHNOLOGY. DOI: 10.12438/cst.2023-1943 |
[2] | LI Huiting, CHANG Suoliang, ZHANG Sheng, LIU Bo, ZHAO Xing, YU Pan. Evaluation of coal seam roof water-bearing risk area via anisotropic high-resolution seismic processing[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 192-200. DOI: 10.12438/cst.2023-0376 |
[3] | LI Zhen, WU Guanyang, SI Shangjin, LIU Guangxu, LI Mingming, ZHANG Chengxiang, XU Rongchao. Differences between reverse and normal shear in failure characteristics of layered rocks[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(7): 37-47. DOI: 10.12438/cst.2024-0222 |
[4] | ZHU Chuanqi, WANG Lei, CHEN Lipeng, ZHANG Yu, WANG Ancheng. Wave velocity evolution and fracture distribution of soft coal under uniaxial compression[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 288-301. DOI: 10.12438/cst.2023-1388 |
[5] | CHEN Lichao, WANG Shengwei, ZHANG Diankun. Experimental investigation on fracture behavior of lignite and its fracturing significance:taking Shengli Coalfield as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 63-71. DOI: 10.13199/j.cnki.cst.2021-1313 |
[7] | LI Qin, ZHAO Bin, MA Suibo. Study on characteristics of seismic wave velocity response in orthotropic fractured coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6). |
[8] | LIN Baiquan, SONG Haoran, YANG Wei, ZHAO Yang, ZHA Wei. Study on effective gas drainage area based on anisotropic coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6). |
[9] | Guo Xiaojie Huan Xuan Gong Weidong Zhang Yugui, . Study on coal complex resistivity anisotropy and characteristics of frequency response[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4). |
[10] | Study on Coal Conductive Properties of Different Coal Structure[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (7). |
1. |
李贵山,于振锋,杨晋东,宋新亚,郭琛. 沁水盆地郑庄区块煤层气水平井钻井体系优化. 煤炭科学技术. 2023(04): 118-126 .
![]() | |
2. |
刘一楠,吴翔,李勇,徐立富. 古交矿区太原组煤层气开发地质特征及产能优化. 煤炭科学技术. 2022(08): 125-132 .
![]() |