Citation: | XU Fengyin,ZHEN Huaibin,LI Shuguang,et al. The history and development direction of iterative upgrading of deep coalbed methane reservoir reconstruction technology—Taking the Daji Block in the eastern margin of the Ordos Basin as an example[J]. Coal Science and Technology,2025,53(3):1−18. DOI: 10.12438/cst.2025-0032 |
In 2019, PetroChina’s Coalbed Methane (CBM) Company achieved a groundbreaking breakthrough in the profitable development of deep coalbed methane reservoirs. This was accomplished through technological innovation in reservoir stimulation for the deeply buried No. 8 coal seam in the Daji block, located on the eastern margin of the Ordos Basin, with burial depths exceeding 2 000 m. This success significantly accelerated the exploration and development of deep CBM across the country, marking the beginning of the most prosperous period in the history of China’s CBM industry. Over the past five years, practical experience has demonstrated that advancements and iterative upgrades in reservoir stimulation technologies are key pathways for driving the profitable development of deep CBM and achieving reserve growth and production increases. This paper systematically reviews the stages and iterative progress of reservoir stimulation technologies since the profitable development of deep CBM was realized. Four fracturing technologies—Volumetric acidizing, large-scale volumetric fracturing, ultra-large-scale volumetric fracturing, and integrated geological-engineering precision fracturing—are examined in terms of their implementation and effectiveness. Additionally, a brief analysis of the performance of corresponding fracturing fluid systems is provided.The technological progression evolved from pursuing matrix stimulation to achieving large-scale fracture networks, from maximizing stimulation volume to optimizing well-to-fracture network integration, and eventually to adopting innovative technologies and advanced concepts for reservoir stimulation. Practical application of finely tailored fracturing designs based on geological characteristics has yielded remarkable results.However, the paper identifies five key challenges and areas for improvement in deep coal reservoir stimulation: High water consumption and difficulties in managing flowback fluids during ultra-large-scale fracturing; The need for breakthroughs in intelligent fracturing technologies; Immaturity of collaborative fracturing methods; The urgent requirement to establish fracturing technology systems for deep, medium-to-low-rank coal seams; Incomplete functionality of fracturing fluids.To address these challenges, six development directions are proposed:① Advancing water-reducing fracturing techniques; ② Conducting research on fishbone horizontal wells combined with matrix acidizing for large-scale water-reduction and production enhancement; ③ Expanding the application of artificial intelligence in intelligent fracturing and post-fracturing evaluation; ④ Developing and implementing collaborative fracturing techniques to optimize well-to-fracture network integration; ⑤ Strengthening research and development and application of stimulation technologies for deep, medium-to-low-rank coal reservoirs; ⑥ Innovating new fracturing materials to further reduce costs, improve efficiency, and enhance recovery rates for deep CBM.
[1] |
庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68.
GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.
|
[2] |
郑民,李建忠,吴晓智,等. 我国主要含油气盆地油气资源潜力及未来重点勘探领域[J]. 地球科学,2019,44(3):833−847.
ZHENG Min,LI Jianzhong,WU Xiaozhi,et al. Potential of oil and natural gas resources of main hydrocarbon-bearing basins and key exploration fields in China[J]. Earth Science,2019,44(3):833−847.
|
[3] |
孙德强,高文凯,郑军卫,等. 制约中国煤层气发展瓶颈问题及政策建议[J]. 中国能源,2021,43(1):33−38.
SUN Deqiang,GAO Wenkai,ZHENG Junwei,et al. Bottlenecks restricting the development of coalbed methane in China and policy recommendations[J]. Energy of China,2021,43(1):33−38.
|
[4] |
聂志宏,时小松,孙伟,等. 大宁-吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200. doi: 10.12363/issn.1001-1986.21.12.0818
NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200. doi: 10.12363/issn.1001-1986.21.12.0818
|
[5] |
张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.
ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
|
[6] |
张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118. doi: 10.7623/syxb202101010
ZHANG Suian,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118. doi: 10.7623/syxb202101010
|
[7] |
徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003
XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep(layer)coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003
|
[8] |
田丰华,李小刚,朱文涛,等. 大宁—吉县区块8号煤裂缝三维特征评价及压裂段优选[J]. 能源与环保,2023,45(9):88−95.
TIAN Fenghua,LI Xiaogang,ZHU Wentao,et al. Evaluation of 3D characteristics and optimization of fracturing sections for No. 8 coal seam crack in Daning-Ji County block[J]. China Energy and Environmental Protection,2023,45(9):88−95.
|
[9] |
闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区” 的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.
YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
|
[10] |
陈贞龙,王运海,刘晓,等. 延川南深部煤层气开发关键技术与地质工程一体化实践[J]. 煤田地质与勘探,2025,53(1):142−151. doi: 10.12363/issn.1001-1986.24.09.0592
CHEN Zhenlong,WANG Yunhai,LIU Xiao,et al. Critical technologies and geology-engineering integration practices for deep CBM production in the Yanchuannan CBM field[J]. Coal Geology & Exploration,2025,53(1):142−151. doi: 10.12363/issn.1001-1986.24.09.0592
|
[11] |
徐长贵,季洪泉,王存武,等. 鄂尔多斯盆地东缘临兴-神府区块深部煤层气富集规律与勘探对策[J]. 煤田地质与勘探,2024,52(8):1−11. doi: 10.12363/issn.1001-1986.24.01.0026
XU Changgui,JI Hongquan,WANG Cunwu,et al. Enrichment patterns and exploration countermeasures of deep coalbed methane in the Linxing-Shenfu block on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(8):1−11. doi: 10.12363/issn.1001-1986.24.01.0026
|
[12] |
何发岐,董昭雄. 深部煤层气资源开发潜力:以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质,2022,43(2):277−285. doi: 10.11743/ogg20220203
HE Faqi,DONG Zhaoxiong. Development potential of deep coalbed methane:A case study in the Daniudi gas field,Ordos Basin[J]. Oil & Gas Geology,2022,43(2):277−285. doi: 10.11743/ogg20220203
|
[13] |
李国永,姚艳斌,王辉,等. 鄂尔多斯盆地神木–佳县区块深部煤层气地质特征及勘探开发潜力[J]. 煤田地质与勘探,2024,52(2):70−80. doi: 10.12363/issn.1001-1986.23.07.0436
LI Guoyong,YAO Yanbin,WANG Hui,et al. Deep coalbed methane resources in the Shenmu-Jiaxian block,Ordos Basin,China:Geological characteristics and potential for exploration and exploitation[J]. Coal Geology & Exploration,2024,52(2):70−80. doi: 10.12363/issn.1001-1986.23.07.0436
|
[14] |
郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探,2021,26(6):38−49. doi: 10.3969/j.issn.1672-7703.2021.06.003
GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(6):38−49. doi: 10.3969/j.issn.1672-7703.2021.06.003
|
[15] |
郭涛,金晓波,武迪迪,等. 川东南南川区块龙潭组深部煤层气成藏特征及勘探前景[J]. 煤田地质与勘探,2024,52(4):60−67. doi: 10.12363/issn.1001-1986.23.10.0684
GUO Tao,JIN Xiaobo,WU Didi,et al. Accumulation characteristics and exploration prospects of deep coalbed methane in the Longtan Formation of the Nanchuan block on the southeastern margin of the Sichuan Basin[J]. Coal Geology & Exploration,2024,52(4):60−67. doi: 10.12363/issn.1001-1986.23.10.0684
|
[16] |
杨锡禄. 煤层气勘探开发现状与需要解决的技术问题[J]. 中国煤炭,1995,21(8):39−41.
YANG Xilu. The current situation of coalbed methane exploration and exloitation and technical problems thereof[J]. China Coal,1995,21(8):39−41.
|
[17] |
程林林,程远方,祝东峰,等. 体积压裂技术在煤层气开采中的可行性研究[J]. 新疆石油地质,2014,35(5):598−602.
CEHNG Linlin,CHENG Yuanfang,ZHU Dongfeng,et al. Feasibility study on application of volume fracturing technology to coalbed methane(CBM)development[J]. Xinjiang Petroleum Geology,2014,35(5):598−602.
|
[18] |
刘长松,赵海峰,陈帅,等. 大宁–吉县区块深层煤层气井酸压工艺及现场试验[J]. 煤田地质与勘探,2022,50(9):154−162. doi: 10.12363/issn.1001-1986.21.11.0699
LIU Changsong,ZHAO Haifeng,CHEN Shuai,et al. Acid fracturing technology of deep CBM wells and its field test in Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):154−162. doi: 10.12363/issn.1001-1986.21.11.0699
|
[19] |
李曙光,王红娜,徐博瑞,等. 大宁−吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165−172.
LI Shuguang,WANG Hongna,XU Borui,et al. Influencing factors on gas production effect of acid fractured CBM Wells in deep coal seam of Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(3):165−172.
|
[20] |
王策,王明瑜,崔争攀,等. 致密油藏直井大规模体积压裂技术提高采油速度研究与应用[C]//2022油气田勘探与开发国际会议论文集Ⅳ. 西安:陕西省石油学会,2022:74−84.
|
[21] |
吴奇,胥云,张守良,等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报,2014,35(4):706−714. doi: 10.7623/syxb201404011
WU Qi,XU Yun,ZHANG Shouliang,et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica,2014,35(4):706−714. doi: 10.7623/syxb201404011
|
[22] |
胥云,雷群,陈铭,等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发,2018,45(5):874−887. doi: 10.11698/PED.2018.05.14
XU Yun,LEI Qun,CHEN Ming,et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development,2018,45(5):874−887. doi: 10.11698/PED.2018.05.14
|
[23] |
刘之的,韩鸿来,王成旺,等. 鄂尔多斯盆地大宁—吉县区块深部煤层含气饱和度测井计算方法及分布特征研究[J]. 天然气地球科学,2024,35(2):193−201. doi: 10.11764/j.issn.1672-1926.2023.08.004
LIU Zhidi,HAN Honglai,WANG Chengwang,et al. Study on logging calculation method and distribution characteristics of gas saturation in deep coal seam in Daning-Jixian block of Ordos Basin[J]. China Industrial Economics,2024,35(2):193−201. doi: 10.11764/j.issn.1672-1926.2023.08.004
|
[24] |
雷群,胥云,才博,等. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发,2022,49(1):166−172,182. doi: 10.11698/PED.2022.01.15
LEI Qun,XU Yun,CAI Bo,et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development,2022,49(1):166−172,182. doi: 10.11698/PED.2022.01.15
|
[25] |
赵金洲,任岚,沈骋,等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业,2018,38(3):1−14. doi: 10.3787/j.issn.1000-0976.2018.03.001
ZHAO Jinzhou,REN Lan,SHEN Cheng,et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry,2018,38(3):1−14. doi: 10.3787/j.issn.1000-0976.2018.03.001
|
[26] |
李东旭. 基于产能指示剂的致密油水平井大规模压裂后评估[J]. 化学工程与装备,2018(5):184−187.
LI Dongxu. Post-fracturing evaluation of horizontal wells in tight oil based on productivity indicators[J]. Chemical Engineering & Equipment,2018(5):184−187.
|
[27] |
熊先钺,甄怀宾,李曙光,等. 大宁–吉县区块深部煤层气多轮次转向压裂技术及应用[J]. 煤田地质与勘探,2024,52(2):147−160. doi: 10.12363/issn.1001-1986.23.10.0683
XIONG Xianyue,ZHEN Huaibin,LI Shuguang,et al. Multi-round diverting fracturing technology and its application in deep coalbed methane in the Daning-Jixian block[J]. Coal Geology & Exploration,2024,52(2):147−160. doi: 10.12363/issn.1001-1986.23.10.0683
|
[28] |
龚斌,王虹雅,王红娜,等. 基于大数据分析算法的深部煤层气地质—工程一体化智能决策技术[J]. 石油学报,2023,44(11):1949−1958. doi: 10.7623/syxb202311015
GONG Bin,WANG Hongya,WANG Hongna,et al. Integrated intelligent decision-making technology for deep coalbed methane geology and engineering based on big data analysis algorithms[J]. Acta Petrolei Sinica,2023,44(11):1949−1958. doi: 10.7623/syxb202311015
|
[29] |
李雪晨. 数据驱动的压裂水平井产量预测方法及应用研究[D]. 北京:中国石油大学(北京),2023.
LI Xuechen. Research on data-driven production prediction method and application of fractured horizontal wells[D]. Beijing:China University of Petroleum (Beijing),2023.
|