Advance Search

YU Jie,QIN Ruibao,HUANG Tao,et al. Evaluating method of gas content of coalbed methane based on nuclear magnetic resonance technology[J]. Coal Science and Technology,2023,51(11):158−165

. DOI: 10.12438/cst.QN21-011
Citation:

YU Jie,QIN Ruibao,HUANG Tao,et al. Evaluating method of gas content of coalbed methane based on nuclear magnetic resonance technology[J]. Coal Science and Technology,2023,51(11):158−165

. DOI: 10.12438/cst.QN21-011

Evaluating method of gas content of coalbed methane based on nuclear magnetic resonance technology

Funds: 

China National Offshore Oil Corporation's "14th Five Year Plan" Major Science and Technology Project (KJGG2021-1000)

More Information
  • Received Date: October 19, 2022
  • Available Online: November 15, 2023
  • China has abundant coalbed methane (CBM) resources, which is a good reserve of natural gas. The development and utilization of CBM has multiple values. Gas content of coal is the key to evaluate coal seam, and it is also an important factor to determine the exploration and development area and productivity potential of CBM. Using logging data to evaluate gas content is an important means in CBM exploration and development. In order to avoid the density difference caused by different methane states and the underestimation of gas content caused by Langmuir monolayer adsorption model in coal seam, a new method is adopted to separate the NMR signal of adsorbed natural gas in coal seam, calculate the molecules mole number of natural gas in unit volume formation, and convert into the gas content in standard state by density logging. The experimental results of methane isothermal adsorption and NMR show that differentT2 cut-off values can be used to distinguish methane states in coal seam. The adsorpted methane content calculated by using new method based on NMR is in good agreement with the measurement of coal sample, which proves the effectiveness of the method. The actual logging data processing and interpretation results show that the new method based on NMR logging is more effective than the method based on conventional logging in calculating gas content of coal seam.

  • [1]
    邵龙义,侯海海,唐 跃,等. 中国煤层气勘探开发战略接替区优选[J]. 天然气工业,2015(3):1−11.

    SHAO Longyi,HOU Haihai,TANG Yue,et al. Optimization of strategic replacement areas for CBM exploration and development in China[J]. Natural Gas Industry,2015(3):1−11.
    [2]
    张道勇,朱 杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.

    ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic evaluation and availability analysis of coalbed methane resources in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
    [3]
    张宝生,罗东坤,平 洋. 中国煤层气开发社会效益的评价[J]. 统计与决策,2008(18):53−56.

    ZHANG Baosheng,LUO Dongkun,PING Yang. Evaluation of social benefits of coalbed methane development in China[J]. Statistics and Decision,2008(18):53−56.
    [4]
    冯 明,陈 力,徐承科,等. 中国煤层气资源与可持续发展战略[J]. 资源科学,2007,29(3):100−104.

    FENG Ming,CHEN Li,XU Chengke,et al. China’s coalbed methane resources and sustainable development strategy[J]. Resource Science,2007,29(3):100−104.
    [5]
    国家能源局. 煤层气(煤矿瓦斯)开发利用“十三五”规划[EB/OL]. http://www.gov.cn/xinwen/2016-12/04/content5142853.htm, 2016-11.
    [6]
    宋 岩,柳少波,琚宜文,等. 含气量和渗透率耦合作用对高丰度煤层气富集区的控制[J]. 石油学报,2013,34(3):417−426.

    SONG Yan,LIU Shaobo,JU Yiwen,et al. Control of high abundance coalbed methane enrichment area by coupling effect of gas content and permeability[J]. Journal of Petroleum,2013,34(3):417−426.
    [7]
    万金彬,李素娟,黄 科,等. 沁水盆地樊庄区块煤层含气量影响因素分析[J]. 石油天然气学报,2012(9):83−88.

    WAN Jinbin,LI Sujuan,HUANG Ke,et al. Analysis on influencing factors of coal seam gas content in Fanzhuang block of Qinshui Basin[J]. Journal of Petroleum and Natural Gas,2012(9):83−88.
    [8]
    孙海涛,舒龙勇,姜在炳,等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术,2022,50(12):1−13.

    SUN Haitao,SHU Longyong,JIANG Zaibing,et al. Progress and trend of key technologies of CBM developmentand utilization in China coal mine areas[J]. Coal Science and Technology,2022,50(12):1−13.
    [9]
    连承波,赵永军,李汉林,等. 煤层含气量的主控因素及定量预测[J]. 煤炭学报,2005,30(6):726−729.

    LIAN Chenbo,ZHAO Yongjun,LI Hanlin,et al. Main controlling factors and quantitative prediction of coal seam gas content[J]. Journal of China Coal Society,2005,30(6):726−729.
    [10]
    曹军涛,赵军龙,王轶平,等. 煤层气含量影响因素及预测方法[J]. 西安石油大学学报:自然科学版,2013(4):28−34.

    CAO Juntao,ZHAO Junlong,WANG Zhiping,et al. Influencing factors and prediction methods of coalbed methane content[J]. Journal of Xi'an University of petroleum:Natural Science Edition,2013(4):28−34.
    [11]
    金力钻,冯俊贵,温 渊,等. 基于测井敏感参数的煤层含气量定量评价方法:以鄂东气田三交北区块为例[J]. 石油天然气学报,2015(7):24−29.

    JIN Lizuan,FENG Jungui,WENG Yuan,et al. Quantitative evaluation method of coal seam gas content based on logging sensitive parameters: Taking Sanjiaobei block of Edong gas field as an example[J]. Journal of Petroleum and Natural Gas,2015(7):24−29.
    [12]
    KIM A G . Estimating methane content of bituminous coalbeds from adsorption data. United States Bureau of Mines Report of Investigations[J]. 1977, 8245, 22.
    [13]
    HAWKINS J M, SCHRAUFNAGEL R A, OL-SZEWSKL A J. Estimating coalbed gas content and sorption isotherm using well log data[J]. SPE, 1992.
    [14]
    AHMED U, JOHNSTON D, COLSON L. An ad-vanced and integrated approach to coal formation evaluation[J]. SPE, 1991.
    [15]
    李传明,王延斌,韩文龙,等. 基于KIM方程预测沁水盆地柿庄南区块3号煤层含气量[J]. 煤炭技术,2020,39(2):94−96.

    LI Chuanming,WANG Yanbin,HAN Wenlong,et al. Prediction of 3号 coal seam gas content in Shizhuang south block of Qinshui Basin Based on Kim equation[J]. Coal Technology,2020,39(2):94−96.
    [16]
    MULLEN M J. Coalbed methane resource evaluation from wireline logs in the northeastern San Juan Basin: a case study[J]. SPE, 1989.
    [17]
    潘和平,黄智辉. 煤层煤质参数测井解释模型[J]. 现代地质,1998,12(3):447−451.

    PAN Heping,HUANG Zhihui. Logging interpretation model of coal quality parameters in coal seam[J]. Modern Geology,1998,12(3):447−451.
    [18]
    BHANJA A K, SRIVASTAVA O P. A new approach to estimate CBM gas content from well logs[J]. SPE, 2008.
    [19]
    张作清. 和顺地区煤层气工业组分与含气量计算研究[J]. 测井技术,2013,37(1):99−102.

    ZHANG Zuoqing. Study on Calculation of industrial components and gas content of coalbed methane in Heshun area[J]. Logging Technology,2013,37(1):99−102.
    [20]
    陈小军,李鹏飞,李 萍,等. 多元逐步回归分析法在煤层含气量预测中的应用[J]. 煤炭工程,2019,51(2):106−111.

    CHEN Xiaojun,LI Pengfei,LI Ping,et al. Application of multiple stepwise regression analysis in prediction of coal seam gas content[J]. Coal Engineering,2019,51(2):106−111.
    [21]
    侯俊胜. 煤层气储层评价的地球物理测井技术[J]. 现代地质,1998(1):130−133.

    HOU Junsheng. Geophysical logging technology for coalbed methane reservoir evaluation[J]. Modern Geology,1998(1):130−133.
    [22]
    崔晓松,周 瑞,张 凯. 沁水盆地寿阳西部地区煤层气资源潜力评价[J]. 煤炭科学技术,2022,50(7):224−232.

    CUI Xiaosong,ZHOU Rui,ZHANG Kai. Potential evaluation of coalbed methane resources in western Shouyang County of Qinshui Basin[J]. Coal Science and Technology,2022,50(7):224−232.
    [23]
    向 旻,齐兴华,张峰玮,等. 深度学习在煤层气测井解释中的应用研究[J]. 地质与勘探,2020,56(6):8.

    XIANG min,QI Xinghua,ZHANG Fengwei,et al. Application of deep learning in CBM logging interpretation[J]. Geology and Exploration,2020,56(6):8.
    [24]
    黄兆辉. 高阶煤层气储层测井评价方法及其关键问题研究[D]. 北京: 中国地质大学(北京), 2014: 12-18.

    HUANG Zhaohui. Research on logging evaluation method and key problems of high-order coalbed methane reservoir[D]. Beijing: China University of Geosciences (Beijing), 2014: 12-18.
    [25]
    PAPAIOANNOU A, KAUSIK R. Methane storage in nanoporous media as observed via high-field NMR relaxometry[J]. Physical Review Applied, 4, 024018.
    [26]
    BRUNAUER S, EMMETT P H, TELLER E. Adsorp-tion of gases in multimolecular layers[J]. Journal of the American Chemical Society, 60(2), 309–319.
    [27]
    杨 明,柳 磊,刘佳佳,等. 中阶煤孔隙结构的氮吸附−压汞−核磁共振联合表征研究[J]. 煤炭科学技术,2021,49(5):67−74.

    YANG Ming,LIU Lei,LIU Jiajia,et al. Study on joint charac-terization of pore structure of middle-rank coal by ni-trogen adsorption-mercury intrusion-NMR[J]. Coal Science and Technology,2021,49(5):67−74.
    [28]
    Rylander,Erik,Westacott,et al. A Novel Determination of Total Gas-In-Place (TGIP) for Gas Shale From Magnetic Resonance Logs[J]. Petrophysics,2017,58(3):232−241.
    [29]
    许 江,李奇贤,彭守建,等. 叠置含气系统煤层气开采物理模拟试验方法研究[J]. 煤炭科学技术,2021,49(1):225−233.

    XU Jiang,LI Qixian,PENG Shoujian,et al. Study on physical simulation test method of coalbed methane production in superimposed gas-bearing system[J]. Coal Science and Technology,2021,49(1):225−233.
    [30]
    姚艳斌,刘大锰. 基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J]. 煤炭科学技术,2016(6):14−22.

    YAO Yanbin,LIU Dameng. Petrophysics and fluid characterization of coal reservoir based on NMR relaxation spectrum[J]. Coal Science and Technology,2016(6):14−22.
    [31]
    肖立志. 中国复杂油气藏核磁共振测井理论与方法[M]. 科学出版社, 2012.

    XIAO Lizhi. Theory and method of nuclear magnetic resonance logging for complex reservoirs in China [M]. Science Press, 2012.
    [32]
    潘新志,叶建平,孙新阳,等. 鄂尔多斯盆地神府地区中低阶煤层气勘探潜力分析[J]. 煤炭科学技术,2015,43(9):65−70.

    PAN Xinzhi,YE Jianping,SUN Xinyang,et al. Analysis on exploration potential of middle and low rank coalbed methane in Shenfu area of Ordos Basin[J]. Coal Science and Technology,2015,43(9):65−70.
  • Related Articles

    [1]WANG Bo, MA Shiji, TIAN Zhiyin, REN Yongzheng, WANG Jun, HUANG Wanpeng, WANG Ling. Study on strength limit neighborhood range of gas-bearing coal rock under different loading conditions[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(7): 114-125. DOI: 10.12438/cst.2023-1034
    [2]TANG Mingyun, ZHANG Hailu, DUAN Sanzhuang, YAO Guanlin, ZHENG Chunshan, ZHANG Liangwei. Experimental study on effect of heat on methane adsorption and desorption in coal based on modified langmuir model[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(5): 182-189.
    [3]LIU Jiajia, JIA Gaini, CHEN Shouqi, MA Quan. Nuclear magnetic resonance experimental study on gas adsorptioncharacteristics of deep low rank coal[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (9).
    [4]LU Chengang, ZHANG Suian, BAI Tiefeng, LIU Cheng, DU Junjun, XUE Dan. Improved modeling of 3D gas content attributes ofCBM in Junlian Region of southern Sichuan[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (8).
    [5]Xu Yakun Wang Kun Zhang Peng, . Study on coalbed methane main control factors and gas content prediction in Yongcheng Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (5).
    [6]Jiang Wen Tang Shuheng Cao Hui Wan Yi Wang Shanbo, . Study on fractal features of shale pore based on low temperature nitrogen absorption experiment[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (9).
    [7]Yue Gaowei Wang Zhaofeng Xie Ce Li Xiaojun, . Experiment study on gas absorption effect promoted by temperature reducing of coal mass[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (4).
    [8]Hou Jie Zou Changchun Yang Yuqing Zhang Guohua Wang Wenwen, . Comparison study on evaluation methods of coalbed methane gas content with logging interpretation[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (12).
    [9]Wang Zhaofeng Su Weiwei Chen Xiangjun Wu Jiahao, . Experimental study and mechanism analysis on natural water absorption and imbibition test of gas- bearing coal[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (8).
    [10]CHEN Liang LIU Ming-ju WU Bing WANG Yin-kai WANG Chao, . Determination on Critical Value of Gas Content Based on Gas Adsorption and Desorption Experiment[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (7).
  • Cited by

    Periodical cited type(1)

    1. 蔡瑞豪,张兵,晁薇薇,郭明强. 深部煤储层游离气含量计算方法研究——以鄂尔多斯盆地L区为例. 中国煤层气. 2024(04): 19-22 .

    Other cited types(1)

Catalog

    Article views (84) PDF downloads (38) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return