XU Hailiang,GUO Xu,SONG Yimin,et al. Analysis on characteristics of anti-impact and energy absorption of new type of composite folding column used in mining[J]. Coal Science and Technology,2023,51(3):225−232
. DOI: 10.13199/j.cnki.cst.2021-0460Citation: |
XU Hailiang,GUO Xu,SONG Yimin,et al. Analysis on characteristics of anti-impact and energy absorption of new type of composite folding column used in mining[J]. Coal Science and Technology,2023,51(3):225−232 . DOI: 10.13199/j.cnki.cst.2021-0460 |
The roadway anti-impact energy absorption support can effectively prevent the occurrence of rock burst, reduce the casualties and property losses caused by sudden disasters, and has achieved good application effect. The most important part is the energy absorption and anti-impact energy absorbing component. According to the principle of maximizing the plastic deformation area, a new type of energy absorption and anti-impact device with arc thin wall was presented to improve the shortcomings of the traditional device. In order to optimize the structure of the thin-wall energy absorption and anti-impact device, the properties of it was analyzed by using the method of finite element numerical simulation. At the same time, the energy absorption characteristics of the new type of composite corrugated column component for mining under different sidewall slopes and wall thicknesses are studied, so that the structure of the new type of composite corrugated column component for mining can reach the optimum. The results showed that: ①Under the same wall thickness, the peak bearing capacityFmax, the average crushing bearing capacityFmean, the total energy absorptionE, and specific energy absorption ESA of the new device are higher than those of the traditional device, among which the average crushing bearing capacityFmean has increased by 34.2%, total energy absorption has increased by nearly 33.6%, and specific energy absorption has increased by 127.4%. The new type of energy absorption device has obvious anti-impact performance advantages. ②With the decrease of the side wall slope, the peak crushing capacityFmax and the fluctuation coefficient of the bearing capacity decrease, the average crushing capacityFmean increases, and the total energy absorptionEand the specific energy absorptionESA slightly increase. ③ As the thin-wall thickness of new device decreases, the crushing peak load, crushing average load, total energy absorption and specific energy absorption all decrease, while the load fluctuation coefficient decreases first and then increases. Through the analysis of the results, it is concluded that the structure of the new energy absorption device can meet the requirements of constant resistance and large deformation when the slope of side wall is 1.2 and the thickness is 7 mm, the component meets the requirements of constant resistance and large deformation; ④The fluctuation of bearing capacity curve can be further reduced by balancing the sidewall thickness and the contact friction coefficient between members and rigid plates.
[1] |
潘一山,李忠华,章梦涛. 我国冲击地压分布、类型、机制及防治研究[J]. 岩石力学与工程学报,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019
PAN Yishan,LI Zhonghua,ZHANG Mengtao. Distribution, type, mechanism and prevention ofrockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019
|
[2] |
孔令海. 煤矿采场围岩微震事件与支承压力分布关系[J]. 采矿与安全工程学报,2014,3l(4):525−531. doi: 10.13545/j.issn1673-3363.2014.04.005
KONG Linghai. Relationship between microseismic events and abutment pressure distribution in coalmine stope[J]. Journal of Mining and Safety Engineering,2014,3l(4):525−531. doi: 10.13545/j.issn1673-3363.2014.04.005
|
[3] |
金 淦,王连国,李兆霖,等. 深部半煤岩回采巷道变形破坏机理及支护对策研究[J]. 采矿与安全工程学报,2015,32(6):963−967. doi: 10.13545/j.cnki.jmse.2015.06.015
JIN Gan,WANG Lianguo,LI Zhaolin,et al. Study on the gateway rock failure mechanism and supporting practice of half-coal-rock extraction roadway in deep coal mine[J]. Journal of Mining and Safety Engineering,2015,32(6):963−967. doi: 10.13545/j.cnki.jmse.2015.06.015
|
[4] |
张宏伟,杜 凯,荣 海,等. 冲击地压的构造应力条件[J]. 辽宁工程技术大学学报(自然科学版),2015,34(2):165−169. doi: 10.11956/j.issn.1008-0562.2015.02.005
ZHANG Hongwei,DU Kai,RONG Hai,et al. Tectonic stress conditions of rock burst[J]. Journal of Liaoning Technology University (Natural Science),2015,34(2):165−169. doi: 10.11956/j.issn.1008-0562.2015.02.005
|
[5] |
李兆福,张升祥,曹 伟,等. 抗冲击巷道液压支架研制与应用[J]. 煤炭科学技术,2007(1):54−55,58. doi: 10.3969/j.issn.0253-2336.2007.01.015
LI Zhaofu,ZHANG Shengxiang,CAO Wei,et al. Development and application of anti bumping gateway hydraulic powered support[J]. Coal Science and Technology,2007(1):54−55,58. doi: 10.3969/j.issn.0253-2336.2007.01.015
|
[6] |
于志宏,关文涛. 采取综合措施使用防冲巷道支架保证严重冲击地压区安全生产[J]. 露天采矿技术,2013(5):81−84. doi: 10.3969/j.issn.1671-9816.2013.05.030
YU Zhihong,GUAN Wentao. Adopts comprehensive measures to use anti-impact roadway support to ensure safe production in serious rock impact area[J]. Opencast Mining Technology,2013(5):81−84. doi: 10.3969/j.issn.1671-9816.2013.05.030
|
[7] |
高明仕,杨青松,赵一超,等. 高应力大变形巷道让压锚索支护技术及构件研[J]. 采矿与安全工程学报,2016,33(1):7−11.
GAO Mingshi,YANG Qingsong,ZHAO Yichao,et al. Developmen to fhigh pressure and large deformation roadway support technology and device[J]. Journal of Mining and Safety Engineering,2016,33(1):7−11.
|
[8] |
潘一山. 冲击地压发生和破坏过程研究[D]. 北京: 清华大学, 1999: 1−47.
PAN Yishan.Study on the occurrence and failure process of rock burst[D]. Beijing: Tsinghua University, 1999: 1−47.
|
[9] |
钱鸣高. 加强煤炭开采理论研究实现科学开采[J]. 采矿与安全工程学报,2017,34(4):615.
QIAN Minggao. Strengthening theoretical research on coal mining and realizing scientific mining[J]. Journal of Mining and Safety Engineering,2017,34(4):615.
|
[10] |
齐庆新, 窦林名. 冲击地压理论与技术[M]. 徐州: 中国矿业大学出版社, 2008: 1−4.
|
[11] |
蓝 航,杜涛涛,彭永伟,等. 浅埋深回采工作面冲击地压发生机理及防治[J]. 煤炭学报,2012,37(10):1618−1623. doi: 10.13225/j.cnki.jccs.2012.10.015
LAN Hang,DU Taotao,PENG Yongwei,et al. Rock-burst mechanism and prevention in working face of shallow buried coal-seam[J]. Journal of China Coal Society,2012,37(10):1618−1623. doi: 10.13225/j.cnki.jccs.2012.10.015
|
[12] |
潘一山,肖永惠,李忠华,等. 冲击地压矿井巷道支护理论研究及应用[J]. 煤炭学报,2014,39(2):222−228. doi: 10.13225/j.cnki.jccs.2013.2015
PAN Yishan,XIAO Yonghui,LI Zhonghua,et al. Study of tunnel support theory of rockburst in coal mine and its application[J]. Journal of China Coal Society,2014,39(2):222−228. doi: 10.13225/j.cnki.jccs.2013.2015
|
[13] |
唐 治,潘一山,李 祁,等. 矿用防冲方形折纹薄壁构件吸能特性数值分析[J]. 振动与冲击,2014,33(23):87−191,115. doi: 10.13465/j.cnki.jvs.2014.23.016
TANG Zhi,PAN Yishan,LI Qi,et al. Numerical analysis of energy-absorption properties of a thin-walled component with square folds for rock burst prevention in mine[J]. Journal of Vibration and Shock,2014,33(23):87−191,115. doi: 10.13465/j.cnki.jvs.2014.23.016
|
[14] |
潘一山,肖永惠,李国臻,等. 一种矿用消波耗能缓冲构件设计及试验初探[J]. 岩石力学与工程学报,2012,31(4):649−655.
PAN Yishan,XIAO Yonghui,LI Guozhen,et al. Design and test of a wave dissipation energy dissipation device for mine[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(4):649−655.
|
[15] |
张 涛,徐治平,朱学康,等. 泡沫铝填充薄壁构件吸能分[J]. 舰船科学技术,2007(2):52−56.
ZHANG Tao,XU Zhiping,ZHU Xuekang,et al. Dynamic crushing of thin-walled extrusions filled with aluminium-foam[J]. Journal of Marine Science and Technology,2007(2):52−56.
|
[16] |
桂良进, 范子杰, 王青春. 泡沫填充圆管的动态轴向压缩吸能特性[J]清华大学学报(自然科学版), 2004, 44(5): 709−712
GUI Liangjin, FAN Zijie, WANG Qingchun. Energy absorption properties of foam-filled circular tubes subjected-to dynam is axial crushing[J]. Journal of Tsinghua University ( Natural science edition), 2004, 44( 5): 709−712.
|
[17] |
潘一山,肖永惠,李国臻. 巷道防冲液压支架研究及应用[J]. 煤炭学报,2020,45(1):90−99. doi: 10.13225/j.cnki.jccs.YG19.1762
PAN Yishan,XIAO Yonghui,LI Guozhen. Roadway hydraulic support for rockburst prevention in coal mine and its application[J]. Journal of China Coal Society,2020,45(1):90−99. doi: 10.13225/j.cnki.jccs.YG19.1762
|
[18] |
王 博,周才华,由 衷. 预折纹管在低速冲击载荷作用下的能量吸收[J]. 爆炸与冲击,2015,35(4):473−481. doi: 10.11883/1001-1455(2015)04-0473-09
WANG Bo,ZHOU Caihua,YOU Zhong. Energy absorption of pre-folded origami under low speed impact[J]. Explosion and Shock Waves,2015,35(4):473−481. doi: 10.11883/1001-1455(2015)04-0473-09
|
[19] |
唐 治,潘一山,朱小景,等. 六边薄壁构件径向压缩下的吸能防冲特性分析[J]. 煤炭科学技术,2016,44(11):56−61. doi: 10.13199/j.cnki.cst.2016.11.011
TANG Zhi,PAN Yishan,ZHU Xiaojing,et al. Analysis on energy absorption and impact prevention features of hexagonal thin-wall component under radial compression[J]. Coal Science and Technology,2016,44(11):56−61. doi: 10.13199/j.cnki.cst.2016.11.011
|
[20] |
郝志勇,王率领,潘一山. 矿用防冲折纹筒屈曲吸能特性影响研究[J]. 振动与冲击,2018,37(13):141−148,170. doi: 10.13465/j.cnki.jvs.2018.13.022
HAO Zhiyong,WANG Shuailing,PAN Yishan. Anti-impact folding barrels buckling energy absorbing characteristics[J]. Journal of Vibration and Shock,2018,37(13):141−148,170. doi: 10.13465/j.cnki.jvs.2018.13.022
|
[21] |
赵善坤, 刘 军, 王永仁, 等. 煤岩构件体多级应力控制防冲实践及动态调控[J]. 地下空间与工程学报, 2013, 9(5): 1057−1064, 1102.
ZHAO Shankun, LIU Jun, WANG Yongren, et al. Dynamical control and multi-field stress control of rock burst prevention for coal-rock structure, 2013, 9(5): 1057−1064, 1102.
|
[22] |
田利军. “三硬”条件煤层压变区域失衡冲击理论及应用[J]. 地下空间与工程学报,2014,10(5):1192−1197.
TIAN Lijun. The pressure changing area imbalance theory of “three hard”coal seam and its application[J]. Chinese Journal of Underground Space and Engineering,2014,10(5):1192−1197.
|
[23] |
王凯兴,孟村影,杨 月,等. 块系覆岩中摆型波传播对巷道支护动力响应影响[J]. 煤炭学报,2014,39(2):347−352. doi: 10.13225/j.cnki.jccs.2013.2020
WANG Kaixing,MENG Cunying,YANG Yue,et al. Dynamic response of roadway support on pendulum type waves propagation in overburden block rock mass[J]. Journal of China Coal Society,2014,39(2):347−352. doi: 10.13225/j.cnki.jccs.2013.2020
|
1. |
许杨丰. 吸能支护技术在深部岩石工程中的应用. 湖南有色金属. 2024(03): 5-8 .
![]() | |
2. |
许海亮,郑鑫雷,刘玉欣. 内嵌管板式六边折纹吸能构件吸能特性研究. 北方工业大学学报. 2024(04): 32-40 .
![]() |