Stick-slip meta-instability of coal under uniaxial loading and AE and EMR response characteristics
-
Graphical Abstract
-
Abstract
Meta-instability stage is the most abundant precursory information and the most intense change stage in the process of fault stick-slip instability. In order to deeply explore the characteristics of coal meta-instability and the response law of acoustic and electrical signals in this process, the uniaxial graded loading experiments of coal samples with different prefabricated crack angles were carried out. The internal fracture source location, surface displacement field, acoustic emission and electromagnetic radiation signals of the samples were synchronously collected, and the mechanical behavior and acoustic and electrical characteristics of coal meta-instability were analyzed. The results show that: ① The inclination angle of the prefabricated crack significantly affects the internal stress distribution of the loaded coal sample, and even the expansion distribution of the new cracks in the meta-instability stage. The acoustic emission count and energy have obvious responses to stress and failure. When the meta-instability is near, the acoustic emission count and energy increase sharply at the same time, and the signal proportion is close to 20%. The response characteristics can be used as the basis for judging the crack coal sample entering the meta-instability stage. ② After entering the meta-instability state, the electromagnetic radiation activity is the most intense, which is almost consistent with the occurrence time of stress drop. Before the main fracture occurs, the energy and amplitude of electromagnetic radiation increase sharply, and the peak energy increases first and then decreases with the increase of crack dip angle. When the crack dip angle is 45°, the electromagnetic radiation count accounts for the largest proportion of the total instability process. ③ The fracture profile of the coal sample in the meta-instability stage has been basically formed. The inclination angle of the prefabricated crack has a significant impact on the duration of the meta-instability stage of the coal sample. When the inclination angle is 45°, the duration of the meta-instability stage is the longest, and when the inclination angle is 60°, the duration proportion is the shortest. The research results can be used to formulate the monitoring scheme of fault meta-instability, and the evolution and disaster of large-scale rock burst in fault structural area
-
-