SHU Zhenyu,XU Xiang,WEI Yingchun,et al. Study on macromolecular structure of different types of contact metamorphic coals[J]. Coal Science and Technology,2023,51(6):147−157
. DOI: 10.13199/j.cnki.cst.2021-1466Citation: |
SHU Zhenyu,XU Xiang,WEI Yingchun,et al. Study on macromolecular structure of different types of contact metamorphic coals[J]. Coal Science and Technology,2023,51(6):147−157 . DOI: 10.13199/j.cnki.cst.2021-1466 |
Contact metamorphism occurs when magma intrudes into the coal seam, resulting in changes to the microfraction, grade, chemical composition, physico-chemical structure and process properties of the coal. Different types of contact metamorphic products are formed under different tectonic-thermal conditions. In order to reveal the variability of different types of contact metamorphic coals and their controlling factors from the macromolecular structure scale, a comparative study of natural coke series samples from the Tashan mine in Datong, Shanxi Province and coal-based graphite series samples from the Lutang mine in Hunan Province was carried out using industrial analysis, elemental analysis, reflectance determination, X-ray diffraction (XRD) and Raman spectroscopy (Raman) test methods, and combined with geological background analysis. The results show that the small shallow-formed rocks have a short thermal action time, poor thermal confinement conditions, belong to high temperature and low pressure condition, narrow contact metamorphic zone, and develop natural coke - thermal transformation coal sequence; the series is in the carbonation stage, and the coal macromolecular structure is dominated by chemical changes, with aromatization and ring condensation dominating. It shows carbon enrichment, dehydrogenation, deoxygenation, reduction of defects in the active sites such as side chains and functional groups, growth of aromatic structural units leading to an increase in defects within the aromatic level, and the aromatic lamellae are not ordered. The acidic and moderately acidic deep-formed rock bodies such as strains and bases intruded in a regional extrusive tectonic setting are well heated, thermally confined and under high temperature and pressure conditions, and the contact metamorphic width can exceed 1km, developing graphite-semi-graphite-anthracite metamorphic sequences; the chemical composition of the coal-based graphite series is highly mature and less variable, and the macromolecular structure is dominated by physical changes, mainly occurring as collagenesis and rank physicochemical interactions. The non-oriented aromatic lamellae are spliced and stacked and rotated and oriented by forces, with a continuous reduction of defects and a transition to a three-dimensional ordered crystal structure.
[1] |
HUTTON D H W,DEMPSTER T J,BROWN P E,et al. A new mechanism of granite emplacement: intrusion in active extensional shear zones[J]. Nature,1990,343(6257):452−455. doi: 10.1038/343452a0
|
[2] |
BUDDINGTON A F. GRANITE emplacement with special reference to North America[J]. Geological Society of America Bulletin,1959,70(6):671−747. doi: 10.1130/0016-7606(1959)70[671:GEWSRT]2.0.CO;2
|
[3] |
张 旗,金惟浚,李承东,等. “岩浆热场”说及其成矿意义(上)[J]. 甘肃地质,2014,23(1):1−18.
ZHANG Qi,JIN Weijun,LI Chengdong,et al. “Magmatic thermal field” and its Metallogenic Significance[J]. Gansu Geology,2014,23(1):1−18.
|
[4] |
杨 起. 中国煤变质作用[M]. 北京: 煤炭工业出版社. 1996.
YANG Qi. Coal metamorphism in China [M]. Beijing: China Coal Industry Press, 1996.
|
[5] |
SINGH A K,SHARMA M,SINGH M P. Genesis of natural cokes: some Indian examples[J]. International Journal of Coal Geology,2008,75(1):40−48. doi: 10.1016/j.coal.2008.01.002
|
[6] |
QUEROL X,ALASTUEY A,LOPEZ-SOLER A,et al. Geological controls on the mineral matter and trace elements of coals from the Fuxin basin, Liaoning Province, northeast China[J]. International Journal of Coal Geology,1997,34(1-2):89−109. doi: 10.1016/S0166-5162(97)00014-1
|
[7] |
刘桂建. 黄河北煤田岩浆侵入体基本特征[J]. 中国煤田地质,1994,6(2):30−34.
LIU Guijian. Characteristics of magmatic intrusion in the Huanghe Coalfield[J]. Coal Geology of China,1994,6(2):30−34.
|
[8] |
QUADERER A,MASTALERZ M,SCHIMMELMANN A,et al. Dike-induced thermal alteration of the Springfield Coal Member (Pennsylvanian) and adjacent clastic rocks, Illinois Basin, USA[J]. International Journal of Coal Geology,2016,166:108−117. doi: 10.1016/j.coal.2016.07.005
|
[9] |
RAHMAN M W,RIMMER S M. Effects of rapid thermal alteration on coal: Geochemical and petrographic signatures in the Springfield (5) Coal, Illinois Basin[J]. International Journal of Coal Geology,2014,131:214−226. doi: 10.1016/j.coal.2014.06.020
|
[10] |
RIMMER S M,CRELLING J C,YOKSOULIAN L E. An occurrence of coked bitumen, Raton formation, Purgatoire River valley, Colorado, USA[J]. International Journal of Coal Geology,2015,141:63−73.
|
[11] |
SINGH A K,SHARMA M,SINGH M P. SEM and reflected light petrography: A case study on natural cokes from seam XIV, Jharia coalfield, India[J]. Fuel,2013,112:502−512. doi: 10.1016/j.fuel.2013.02.063
|
[12] |
RIMMER S M,YOKSOULIAN L E,HOWER J C. Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5)(Pennsylvanian) coal, Illinois Basin[J]. International Journal of Coal Geology,2009,79(3):74−82. doi: 10.1016/j.coal.2009.06.002
|
[13] |
张嫌妮,王安鹏,侯云超,等. 不同升温速率下烟煤的低温氧化放热特性研究[J]. 煤炭科学技术,2022,50(9):104−113.
ZHANC Yanni,WANC Anpeng,HOU Yunchao,et al. Study on low temperature oxidation heat release characteristicsof bituminous coal at different heating rates[J]. Coal Science and Technology,2022,50(9):104−113.
|
[14] |
WARD C R,WARBROOKE P R,ROBERTS F I. Geochemical and mineralogical changes in a coal seam due to contact metamorphism, Sydney Basin, New South Wales, Australia[J]. International journal of coal geology,1989,11(2):105−125. doi: 10.1016/0166-5162(89)90001-3
|
[15] |
SINGH A K,SINGH M P,SHARMA M,et al. Microstructures and microtextures of natural cokes: a case study of heat-affected coking coals from the Jharia coalfield, India[J]. International Journal of Coal Geology,2007,71(2/3):153−175. doi: 10.1016/j.coal.2006.08.006
|
[16] |
王 斌,李波波,许石青,等. 煤岩基质-裂隙相互作用下渗透特性研究[J]. 煤炭科学技术,2022,50(11):110−115.
WANC Bin,LI Bobo,XU Shiqing,et al. Study on permeability characteristics of coal rock under the interaction of coalmatrix and fracture[J]. Coal Science and Technology,2022,50(11):110−115.
|
[17] |
DUTCHER R R, CAMPBELL D L, THORNTON C P. Coal metamorphism and igneous intrusives in Colorado[M]. 1966, 46(55): 708−723.
|
[18] |
秦 勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州: 中国矿业大学出版社, 1994.
QIN Yong. Micropetrology and structural evolution of high rank coals in P. R. China [M]. Xuzhou: China University of Mining and Technology Press, 1994.
|
[19] |
曹代勇, 魏迎春, 李 阳, 等. 煤系石墨鉴别指标厘定及分类分级体系构建[J]. 煤炭学报, 2021, 46(6): 1833−1846.
CAO Daiyong, WEI Yingchun, LI Yang, et al. Determination of identification index and construction of classification and classification system of coal measure graphite [J]. Journal of China Coal Society, 2021, 46(6): 1833−1846.
|
[20] |
李 阔, 刘钦甫, 张 帅, 等. 煤系石墨显微组分与结构特征[J]. 矿物学报, 2021, 41(1) : 101−108.
LI Kuo, LIU Qinfu, ZHANG Shuai, et al. Microstructure distinguishable components and structure of coaly graphite [J]. Acta Minerologica Sinica, 2021, 41(1) : 101−108.
|
[21] |
LI K,RIMMER S M,LIU Q. Geochemical and petrographic analysis of graphitized coals from Central Hunan, China[J]. International Journal of Coal Geology,2018,195:267−279. doi: 10.1016/j.coal.2018.06.009
|
[22] |
王绍清,沙吉顿,张 浩,等. 热接触变质煤制备石墨烯:化学结构演化[J]. 煤炭科学技术,2021,49(2):238−244.
WANG Shaoqing,SHA Jidun,ZHANG Hao,et al. Graphene produced by thermally-altered coal:chemical structure evolution[J]. Coal Science and Technology,2021,49(2):238−244.
|
[23] |
李久庆,秦 勇,陈义林. 超无烟煤中石墨微晶产出状态与成因[J]. 煤田地质与勘探,2020,48(1):27−33.
LI Jiuqing,QIN Yong,CHEN Yilin. Occurrence and origin of graphite microcrystal in meta-anthracite[J]. Coal geology & exploration,2020,48(1):27−33.
|
[24] |
许献磊,王一丹,朱鹏桥,等. 基于高频雷达波的煤岩层位识别与追踪方法研究[J]. 煤炭科学技术,2022,50(7):50−58.
XU Xianlei,WANG Yidan,ZHU Pengqiao,et al. Research on coal and rock horizon identification and tracking method based on high frequency radar waves[J]. Coal Science and Technology,2022,50(7):50−58.
|
[25] |
SHI Q,QIN B,BI Q,et al. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine, China[J]. Fuel,2018,226:307−315. doi: 10.1016/j.fuel.2018.04.027
|
[26] |
DUN W,GUIJIAN L,RUOYU S,et al. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction[J]. Energy & Fuels,2013,27(10):5823−5830.
|
[27] |
王培珍,余 晨,薛子邯,等. 基于迁移学习的煤岩壳质组显微组分识别模型[J]. 煤炭科学技术,2022,50(1):220−227.
WANG Peizhen,YU Chen,XUE Zihan,et al. Transfer learning based identification model for macerals of exinite in coal[J]. Coal Science and Technology,2022,50(1):220−227.
|
[28] |
DIESSEL C F K,BROTHERS R N,BLACK P M. Coalification and graphitization in high-pressure schists in New Caledonia[J]. Contributions to Mineralogy and Petrology,1978,68(1):63−78. doi: 10.1007/BF00375447
|
[29] |
BUSECK P R,BEYSSAC O. From organic matter to graphite: Graphitization[J]. Elements,2014,10(6):421−426. doi: 10.2113/gselements.10.6.421
|
[30] |
王 路,董业绩,张 鹤,等. 煤成石墨化作用的影响因素及其试验验证[J]. 矿业科学学报,2018,3(1):9−19.
WANG Lu,DONG Guangzheng,ZHANG He,et al. Factors affecting graphitization of coal and the experimental validation[J]. Journal of mining science,2018,3(1):9−19.
|
[31] |
GONZÁLEZ D,MONTES-MORÁN M A,GARCIA A B. Graphite materials prepared from an anthracite: a structural characterization[J]. Energy & fuels,2003,17(5):1324−1329.
|
[32] |
琚宜文,姜 波,侯泉林,等. 构造煤结构: 成因新分类及其地质意义[J]. 煤炭学报,2004,29(5):513−517.
JU Yiwen,JIANG Bo,HOU Quanlin,et al. The new structural-genetic classification system in tectonically deformed coals and its geological significance[J]. Journal of China coal society,2004,29(5):513−517.
|
[33] |
CAO D Y,LI X M,ZHANG S R. Influence of tectonic stress on coalification: stress degradation mechanism and stress polycondensation mechanism[J]. Science in China Series D:Earth Sciences,2007,50(1):43−54. doi: 10.1007/s11430-007-2023-3
|
[34] |
BONIJOLY M,OBERLIN M,OBERLIN A. A possible mechanism for natural graphite formation[J]. International Journal of Coal Geology,1982,1(4):283−312. doi: 10.1016/0166-5162(82)90018-0
|
[35] |
BUSTIN R M,ROUZAUD J N,ROSS J V. Natural graphitization of anthracite: experimental considerations[J]. Carbon,1995,33(5):679−691. doi: 10.1016/0008-6223(94)00155-S
|
[36] |
WANG L,CAO D,PENG Y,et al. Strain-Induced graphitization mechanism of coal-based graphite from lutang, Hunan Province, China[J]. Minerals,2019,9(10):617. doi: 10.3390/min9100617
|
[37] |
刘志飞. 基于模拟试验的煤岩显微组分石墨化差异性机制研究[D]. 北京: 中国矿业大学(北京): 2021.
LIU Zhifei. The mechanism on graphitization difference of graphitization of difference of coal macerals based on simulation experiment [D]. Beijing: China University of Mining and Technology (Beijing): 2021.
|
[38] |
INAGAKI M,HIRANO S,SAITO H. 85. Accelerating effect of coexisting calcium compounds on graphitization under pressure[J]. Carbon,1969,7(6):722.
|
[39] |
NODA T,INAGAKI M,HIRANO S,et al. Effect of coexisting minerals on graphitization of carbon under pressure. III. Accelerating effect of calcium hydroxide[J]. Bulletin of the Chemical Society of Japan,1969,42(6):1738−1740. doi: 10.1246/bcsj.42.1738
|
[40] |
NYATHI M S,CLIFFORD C B,SCHOBERT H H. Characterization of graphitic materials prepared from different rank Pennsylvania anthracites[J]. Fuel,2013,114:244−250. doi: 10.1016/j.fuel.2012.04.003
|
[41] |
王 路. 煤系石墨的构造-热成矿机制研究[D]. 北京: 中国矿业大学(北京), 2020.
WANG Lu. Study on tectonic-thermal metallogenic mechanism of graphite of the coal-based graphite [D]. Beijing: China University of Mining and Technology−Beijing, 2020.
|
[42] |
丁正云,王 路,曾 欢,等. 福建大田: 漳平地区构造: 热对煤系石墨成矿及赋存的控制探讨[J]. 煤田地质与勘探,2020,48(1):55−61.
DING Zhengyun,WANG Lu,ZENG Huan,et al. The control of mineralization and occurrence of coal-based graphite by tectonic-heat in Zhangping-Datian Area, Fujian[J]. Coal Geology & Exploration,2020,48(1):55−61.
|
[43] |
王 路,彭扬文,曹代勇,等. 湖南鲁塘煤系石墨矿区构造格局及控矿机制[J]. 煤田地质与勘探,2020,48(1):48−54.
WANG Lu,PENG Yangwen,CAO Daiyong,et al. The tectonic framework and controlling mechanism of coal-based graphite in Lutang mining area, Hunan province[J]. Coal Geology and Exploration,2020,48(1):48−54.
|
[44] |
马宏涛. 大同煤田火成岩的侵入特征及接触变质煤的煤岩学研究[D]. 太原: 太原理工大学, 2020.
MA Hongtao. Characteristic of igneous, and petrography of contact metamorphosed coal in Datong Coalfield [D]. Taiyuan: Taiyuan University of Technology, 2020.
|
[45] |
马宏涛,宋晓夏,李凯杰,等. 大同煤田接触变质煤的煤岩煤质变化规律[J]. 煤田地质与勘探,2020,48(2):99−105.
MA Hongtao,SONG Xiaoxia,LI Kaijie,et al. Changes of petrographic characteristics and quality of contact-metamorphosed coals in the Datong Coalfield[J]. Coal Geology and Exploration,2020,48(2):99−105.
|
[46] |
LIN Q,GUET J M. Characterization of coals and macerais by X-ray diffraction[J]. Fuel,1990,69(7):821−825. doi: 10.1016/0016-2361(90)90224-E
|
[47] |
WU S,GU J,ZHANG X,et al. Variation of carbon crystalline structures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures[J]. Energy & Fuels,2008,22(1):199− 206.
|
[48] |
FRANKLIN R E. The structure of graphitic carbons[J]. Acta Crystallographica,1951,4(3):253−261. doi: 10.1107/S0365110X51000842
|
[49] |
陈蔚然. 关于石墨化度计算公式[J]. 炭素技术,1983(6):25,27−31.
CHEN W. R. Calculation Formula of Graphitization Degree[J]. Carbon Technology,1983(6):25,27−31.
|
[50] |
SADEZKY A,MUCKENHUBER H,GROTHE H,et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon,2005,43(8):1731−1742. doi: 10.1016/j.carbon.2005.02.018
|
[51] |
苏现波,司 青,宋金星. 煤的拉曼光谱特征[J]. 煤炭学报,2016,41(5):1197−1202.
SU Xianbo,SI Qing,SONG Jinxing. characteristics of coal Raman spectral[J]. Journal of China Coal Society,2016,41(5):1197−1202.
|
[52] |
唐跃刚,陈鹏翔,李瑞青,等. 京西煤制备氧化石墨烯分子结构模型的构建与优化[J]. 煤炭科学技术,2021,49(6):126−134.
TANG Yuegang,CHEN Pengxiang,LI Ruiqing,et al. Model construction and optimization of molecule structure of coal-based grapheme oxide from Jingxi coal[J]. Coal Science and Technology,2021,49(6):126−134.
|
[53] |
MORGA R. Micro-Raman spectroscopy of carbonized semifusinite and fusinite[J]. International Journal of Coal Geology,2011,87(3/4):253−267. doi: 10.1016/j.coal.2011.06.016
|
[54] |
王绍清,张 路,赵云刚,等. 激光诱导法制备煤基石墨烯的探索及其结构特征研究[J]. 煤炭科学技术,2023,51(2):458−465.
WANG Shaoqing,ZHANG Lu,ZHAO Yungang,et al. Exploration and structural characteristics of laser-induced preparation of coal-based graphene[J]. Coal Science and Technology,2023,51(2):458−465.
|
[55] |
RANTITSCH G. , LAMMERER W., FISSLTHALER E, et al. On the discrimination of semi-graphite and graphite by Raman spectroscopy[J]. International Journal of Coal Geology,2016,159:48−56. doi: 10.1016/j.coal.2016.04.001
|
[56] |
BENY-BASSEZ C,ROUZAUD J N. Characterization of carbonaceous materials by correlated electron and optical microscopy and raman microspectroscopy[J]. Scanning Electron Microscopy,1984,1985(1):11.
|
[57] |
BEYSSAC O,BRUNO G,PETITET J P,et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2003,59(10):2267−2276.
|
[58] |
DELDICQUE D,ROUZAUD J,Velde B. A Raman HRTEM study of the carbonization of wood: a new Raman-based paleothermometer dedicated to archaeometry[J]. Carbon,2016,102:319−329. doi: 10.1016/j.carbon.2016.02.042
|
[59] |
李 阔. 湖南新化煤系石墨结构有序化过程研究[D]. 北京: 中国矿业大学(北京), 2019.
LI Kuo. Investigation on the structure ordering of natural coaly graphite from Xinhua, Hunan province, China [D]. Beijing: China University of Mining and Technology−Beijing, 2019.
|
[60] |
TUINSTRA F,KOENIG J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics,1970,53(3):1126−1130. doi: 10.1063/1.1674108
|
[61] |
ZICKLER G A,SMARSLY B,GIERLINGER N,et al. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy[J]. Carbon,2006,44(15):3239−3246. doi: 10.1016/j.carbon.2006.06.029
|
[62] |
RODRIGUES S, MARQUES M, SUÁREZ-RUIZ I, et al. Mi-crostructural investigations of natural and synthetic graphites and semi-graphites [J]. International Journal of Coal Geology. 2013, 111: 67–79.
|