Advance Search
ZHU Hongqing, HUO Yujia, FANG Shuhao, GUO Jinlin. Study on the reasonable stratum of high-drainage roadway with roof strike of fully-mechanized working face in Sijiazhuang Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 234-239. DOI: 10.13199/j.cnki.cst.2021.01.019
Citation: ZHU Hongqing, HUO Yujia, FANG Shuhao, GUO Jinlin. Study on the reasonable stratum of high-drainage roadway with roof strike of fully-mechanized working face in Sijiazhuang Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 234-239. DOI: 10.13199/j.cnki.cst.2021.01.019

Study on the reasonable stratum of high-drainage roadway with roof strike of fully-mechanized working face in Sijiazhuang Mine

More Information
  • Available Online: April 02, 2023
  • Published Date: January 24, 2021
  • The gas emission of No.15106 working face of Sijiazhuang Mine of Yangquan Coal Group is relatively large and has outburst hazard. Aiming at the problem that gas at the upper corner of the working face is easy to exceed the limit, based on the "O" ring theory of overburden failure on the working face, a method of arranging high-drainage roadways on the roof along the strike for gas drainage is proposed. In order to explore the best area of layout of high-drainage roadways, first of all, theoretical calculations and material similarity simulation methods are used to obtain that the height of goaf zone is 0~20 m and the height of fracture zone is 20~60 m, the height of bending subsidence zone is more than 60 m. The range of “O” ring separated layer fracture zone on the mining side is 0~20 m.Along strike direction, the fracture angle of the open cut side is basically stable at 60°, and the fracture angle of the stoping side is 43°~68°with an average of 55°, when the advancing distance of the working face is the same as the length, the breaking angle of the inlet and return air roadways along the inclined direction are both 58°.Fluent software is used to simulate the extraction effect when the vertical distance between the high drainage roadway and the coal roof is 20, 30, 40 m, and the staggered distance from the return airway is 30, 40, 50 m. The results show that when the vertical distance of the high extraction roadway is 30 m, and the horizontal distance is 40 m, the gas volume fraction in the high-drawing lane is the highest, 21.2%, and the upper corner gas volume fraction is the lowest, 0.54%.. After the program obtained from the test is applied to field practice, in the early stage of mining, the gas volume fraction in the upper corner has the risk of exceeding the limit due to the large fissures that have not yet formed. With the advance of the working face, the amount of gas discharged by the air will gradually decrease, and the amount of gas extracted by the high extraction roadway will gradually increase. After entering the normal extraction period, the average value of gas concentration in the upper corner is about 0.6%, which is basically consistent with the simulation results. The scheme can greatly relieve the pressure of air exhaust gas and effectively solve the problem of gas overrun at the upper corner
  • Related Articles

    [1]YI Wang, LIANG Longjun, YAN Lichong, YAN Zhihua, CHEN Jie, GAO Wei, LOU Yi, YANG Fuqin, HU Haiyang, ZHU Jiawei. Key technologies of efficient extraction of coalbed methane (gas) in Guizhou coal mine area[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(3): 339-353. DOI: 10.12438/cst.2024-1637
    [2]WANG Yang, XIANG Jie, QIN Yong, CHEN Shangbin, ZHU Yanming, HUANG Manli, SHI Ying. Characteristics and drainage modes of coalbed methane resources in closed coal mines in Yangquan and Jincheng Mining Areas[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(12): 165-179. DOI: 10.12438/cst.2023-1948
    [3]LI Yanhe, NI Xiaoming, JIA Jinsheng. Extraction mode and engineering demonstration of pressure relief three-dimensional of multi-coal seams in Pingdingshan mining area[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(9): 162-172. DOI: 10.12438/cst.2024-0742
    [4]JIANG Wenping, CHAI Jianlu, ZHANG Qun, ZHANG Peihe, JIANG Zaibing. Key technology progress of surface extraction project deployment based on coordinated development of CBM and coal[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(12): 50-61. DOI: 10.13199/j.cnki.cst.mcq22-25
    [5]MENG Zhaoping, LI Guofu, TIAN Yongdong, WANG Yuhong, LI Chao, CHEN Haoyue, WU Di. Research progress on surface drainage of coalbed methane in abandoned mine gobs of Jincheng Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 204-211.
    [6]SUN Haitao, FU Junhui, ZHANG Zhigang, HU Jun. Study on gas drainage scope in surface well group under the influence of coal mining area[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(2): 109-114. DOI: 10.13199/j.cnki.cst.2021.02.014
    [7]LI Xinju, ZHOU Jingjing. Research on surface subsidence information extraction method based on high phreatic coal mining area[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(4).
    [8]LI Guofu, FU Junhui, LI Chao LI Rifu, . Surface drainage technology and application of CBM in key mining areas of Shanxi Province[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (12).
    [9]sun Dongling Li Rifu, . Drainage technology and application of coalbed methane surface well in mining stable area of coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (5).
    [10]Lai Wenqi Feng Yi Zhang Haifeng, . Study on coal and coalbed methane joint mining model in Xiaohuigou Minefield[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (9).
  • Cited by

    Periodical cited type(19)

    1. 王龙伟,杨亦浩. 寺河矿区煤层气穿采空区水平井技术应用. 能源与节能. 2025(01): 35-39 .
    2. 张学博,王攀,王豪. 小断层影响下的采空区瓦斯运移规律研究. 煤炭科学技术. 2024(04): 214-230 . 本站查看
    3. 徐影,李亚辉,杨樱花,刘卫娟. 穿采空区煤层气水平井井眼与管柱相容性分析及应用研究. 煤. 2024(09): 28-31 .
    4. 李延河,倪小明,贾晋生. 平顶山矿区多煤层卸压立体抽采模式与工程示范. 煤炭科学技术. 2024(09): 162-172 . 本站查看
    5. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 . 本站查看
    6. 苏善博,张培河,李林,降文萍,王正喜. 寺河井田穿煤柱下组煤煤层气水平井钻井技术研究. 煤炭工程. 2023(03): 78-83 .
    7. 徐华龙. 煤与煤层气协调开发三维仿真设计研究. 中国煤炭. 2023(05): 87-93 .
    8. 甄少杰. 井下煤层气抽采工艺的优化研究. 山西化工. 2023(11): 177-178+181 .
    9. 赵学良,贾航,罗华贵. 赵庄煤矿工作面分源联合立体抽采技术应用研究. 煤炭工程. 2022(01): 74-79 .
    10. 孟召平,李国富,田永东,王宇红,李超,陈浩越,吴迪. 晋城矿区废弃矿井采空区煤层气地面抽采研究进展. 煤炭科学技术. 2022(01): 204-211 . 本站查看
    11. 石雷雷,张辉,闫丰. 晋城煤层气产业示范基地建设存在的质量问题和发展路径研究. 中国石油和化工标准与质量. 2022(04): 21-23 .
    12. 周显俊,李国富,李超,王争,李江彪. 煤矿采空区煤层气地面开发技术及工程应用——以沁水盆地晋城矿区为例. 煤田地质与勘探. 2022(05): 66-72 .
    13. 张江华,秦勇,李国富,孟召平,李国庆,李军军,季长江,陈召英. 煤炭采空区下伏煤层气资源潜力及抽采效果——以山西省晋城西部矿区为例. 天然气工业. 2022(06): 146-153 .
    14. 崔晓松,周瑞,张凯. 沁水盆地寿阳西部地区煤层气资源潜力评价. 煤炭科学技术. 2022(07): 224-232 . 本站查看
    15. 刘一楠,吴翔,李勇,徐立富. 古交矿区太原组煤层气开发地质特征及产能优化. 煤炭科学技术. 2022(08): 125-132 . 本站查看
    16. 姚红生,杨松,刘晓,申建,张占龙. 低效煤层气井多次压裂增效开发技术研究. 煤炭科学技术. 2022(09): 121-129 . 本站查看
    17. 李国富,张遂安,季长江,李军军,王朝帅. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系. 煤炭科学技术. 2022(12): 14-25 . 本站查看
    18. 降文萍,柴建禄,张群,张培河,姜在炳. 基于煤层气与煤炭协调开发的地面抽采工程部署关键技术进展. 煤炭科学技术. 2022(12): 50-61 . 本站查看
    19. 降文萍,张培河,刘娜娜,王晶,杜新锋,杨刚,何庆宏. 我国煤层气标准体系构建. 煤炭工程. 2021(08): 1-6 .

    Other cited types(3)

Catalog

    Article views (214) PDF downloads (526) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return