Advance Search
WANG Zhaofeng, XI Jie, CHEN Jinsheng, LI Xuechen, LI Yanfei, MA Xiongwei. Study on time effectiveness of gas drainage by crossing layer drilling in floor rock roadway with one hole and multi-purpose[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 248-256. DOI: 10.13199/j.cnki.cst.2021.01.021
Citation: WANG Zhaofeng, XI Jie, CHEN Jinsheng, LI Xuechen, LI Yanfei, MA Xiongwei. Study on time effectiveness of gas drainage by crossing layer drilling in floor rock roadway with one hole and multi-purpose[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 248-256. DOI: 10.13199/j.cnki.cst.2021.01.021

Study on time effectiveness of gas drainage by crossing layer drilling in floor rock roadway with one hole and multi-purpose

More Information
  • Available Online: April 02, 2023
  • Published Date: January 24, 2021
  • In order to To improve the utilization rate of cross-layer boreholes, based on the evolution law of mining fracture field and stress field under the dynamic behavior of coal and rock, a multi-application gas drainage technology with one hole in floor rock roadway with full life cycle was proposed. It can realize the functions of pre-draining coal seam gas before mining, draining coal seam gas during mining,and draining coal seam gas from goaf. Taking the 1604 fully-mechanized mining face of Guhanshan Mine as an example,field tests have been carried out and the results show that:the gas drainage effect of one hole multi-application test drilling hole has obvious timelines characteristics.In order to To analyze the timelines effect law of test boreholes qualitatively and quantitatively, the whole life cycle of gas drainage can be divided into seven stages, namely, initial pre-draining period, high-efficiency pre-draining period, rapid attenuation pre-draining period, high-efficiency pressure relief and flow increase period, low flow depletion period, after mining gas volume recovery period,and after mining gas volume decline flow period. High efficiency pre-draining period is the most critical stage in the whole life cycle, the second stage is the high-efficiency pressure relief and flow increasing period, and the average gas drainage volume can reach 61.4% of the average gas drainage volume in the pre-drainage high-efficiency period. The range from 70 m in front of the working face to 40 m behind the working face is the area affected by mining pressure relief. In the range of 35 to 40 m in front of the working face, the concentration and volume of gas drainage reached the peak. In the stage of mining while pumping, the average gas drainage volume capacity of the test boreholes 20 to 70 m in front of the mining face is 5 times higher than that before pressure relief. In Guhanshan Mine, the reasonable pre-draining period is 260 d, the reasonable drainage while mining period is 46 d, and the reasonable goaf gas drainage period is 26 d. Through a multi- application drill hole in the rock roadway at the bottom of the coal seam to drainage coal seam gas, the goal of reaching the pre-drainage standard and reducing the gas emission from the working face was realized, which has good popularization and application value.
  • Related Articles

    [1]PANG Yihui, BI Jinglong, YUAN Pengzhe, ZHAO Baofu, DING Ziwei. Coal mining equipment lifecycle management system architecture and key technology[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(2): 335-346. DOI: 10.12438/cst.2024-1609
    [2]WANG Jinman, FENG Yu, YE Tiantian, JIA Mengxuan, GAO Tingyu, LIU Yue, WU Dawei, LI Minggang. Theoretical framework and technical pathway for the integrated ecological restoration throughout the overall life cycle of mining based on NbS[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 377-391. DOI: 10.12438/cst.2024-0797
    [3]WANG Shuangming, LIU Lang, ZHAO Yujiao, ZHANG Bo, WANG Jingyu, ZHU Mengbo, WANG Mei, ZHANG Xiaoyan. New energy exploitation in coal-endowed areas under the target of “double carbon”: a new path for transformation and upgrading of coal mines in the future[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 59-79. DOI: 10.13199/j.cnki.cst.2022-2169
    [4]WANG Zhenyu, LIU Xiaomin, LIU Tingxi, WANG Wenjuan, XUE Lian. Study on influencing factors of coal-water coordinated mining based on theory of full life cycle[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(12): 243-251.
    [5]ZHANG Huijun. Preliminary study on ecological mining mode in coal-rich area of the Yellow River Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(12): 233-242.
    [6]ZHANG Xuhui, GUO Huanhuan, MA Hongwei, CHE Wanli, PAN Gege, ZHANG Chao, ZHAO Youjun, ZHANG Yuliang, MAO Qinghua, FAN Hongwei, DU Yuyang, XUE Xusheng, WANG Chuanwei, DONG Ming, LIU Peng, XIA Jing, CAO Xiangang. Research and application of green evaluation method for shearer based on life cycle[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 48(6): 205-212.
    [7]YU Jiacheng, WANG Gang, LIU Weidong, NING Yongjie, JIANG Hanhan. Life-cycle information integration and working condition discriminational gorithm of mine equipment[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4).
    [8]QIN Zhu. Research and application of life cycle service system of mining equipment[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4).
    [9]Yang Jian Liu Hunju Xi Qingxiang Li Jianhua, . Analysis on reliability standard system of scraper chain based on whole life cycle[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (3).
    [10]LIU Qing-quan TONG Bi FANG You-xiang TU Qing-yi GUO Shuai-fei, . High Efficient Gas Drainage Technology with Fast Full Length Screen Pipe for Borehole Protection in Soft Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (12).
  • Cited by

    Periodical cited type(26)

    1. 王志刚,马丁,杨震,贾帆帆. 改进型止浆塞在上斜钻孔带压封堵地质异常区中的应用研究. 煤炭技术. 2025(01): 167-170 .
    2. 王慧恩. 穿层瓦斯抽采钻孔渗流演化特征. 陕西煤炭. 2025(01): 37-40+63 .
    3. 孙赫. 穿层钻孔瓦斯抽采半径研究. 煤炭技术. 2024(03): 165-168 .
    4. 董相欢. 底板承压水上底抽巷破坏特征及控制技术. 陕西煤炭. 2024(06): 70-76 .
    5. 段东东. 底板承压水上底抽巷布置层位及围岩控制技术研究. 山东煤炭科技. 2024(07): 114-119 .
    6. 张建国,翟成,唐伟. 深井不同层位底板岩巷与煤巷相互影响研究. 煤炭工程. 2024(08): 1-6 .
    7. 刘军. 煤层群上下保护层开采围岩应力及裂隙演化规律研究. 矿业安全与环保. 2024(04): 56-63+73 .
    8. 高登云,李瑞群. 神东矿区综采工作面上隅角瓦斯治理技术研究. 煤炭工程. 2023(04): 87-91 .
    9. 郭建行. 近距离高瓦斯煤层群首采层“一面四巷”瓦斯治理技术. 煤炭工程. 2023(05): 70-75 .
    10. 胡亚超,熊祖强,王春,王成. 煤层顶板深孔预裂爆破高效封孔材料及工艺研究. 煤炭科学技术. 2023(04): 30-36 . 本站查看
    11. 张超,范富槐,李树刚,翟成,江丙友,杨朴超,曾祥真. 基于微胶囊技术的瓦斯抽采钻孔密封材料研究. 煤炭科学技术. 2023(04): 72-79 . 本站查看
    12. 武瑞龙. 复杂地层底板梳状定向钻孔抽采瓦斯技术研究. 煤炭工程. 2023(06): 79-82 .
    13. 温俊三. 赵庄矿底抽巷穿层钻孔偏斜规律研究. 山西煤炭. 2023(01): 13-18 .
    14. 刘军,张宪尚,张士岭. 煤层群上下保护层开采围岩应力时空演化规律及应用研究. 中国安全生产科学技术. 2023(06): 66-73 .
    15. 孙伟. 深部高应力底抽巷围岩破坏特征及控制技术研究. 山西冶金. 2023(06): 220-224 .
    16. 潘竞涛,刘长宇,赵丹,贾男,刘海金,任志保. 下行定向钻孔氮气泡沫幂律多相流携渣解堵技术. 煤炭科学技术. 2023(12): 298-309 . 本站查看
    17. 赵学良,贾航,罗华贵. 赵庄煤矿工作面分源联合立体抽采技术应用研究. 煤炭工程. 2022(01): 74-79 .
    18. 包若羽. 松软煤层瓦斯抽采钻孔“同心环”加固密封技术研究与应用. 煤炭科学技术. 2022(05): 164-170 . 本站查看
    19. 李高健,韦金龙,杨竹军,赵宝友. 密集抽采钻孔及浸水蠕变作用下底抽巷围岩控制技术研究. 煤炭工程. 2022(07): 44-49 .
    20. 马玉林,王常瑞,马凯. 红外加热储层煤岩热损伤特征扫描电镜及增透试验研究. 煤炭科学技术. 2022(07): 177-183 . 本站查看
    21. 马雨坤. 瓦斯抽采钻孔精准防斜设备研究. 能源技术与管理. 2022(05): 142-144 .
    22. 马莉,石新莉,李树刚,林海飞,宋爽,代新冠. 基于MPC的瓦斯抽采智能调控模型研究. 煤炭科学技术. 2022(08): 82-90 . 本站查看
    23. 张世阔,王力,李秀山,豆旭谦,田广生,张振雷,魏涛. 煤矿井下硬岩气动冲击回转钻进技术与装备. 煤炭技术. 2022(11): 5-8 .
    24. 李喜员,孙矩正,张益民,魏风清. 固液两相复合封孔技术在瓦斯抽采中的应用. 矿业安全与环保. 2022(05): 131-134 .
    25. 豆旭谦,姚宁平,李秀山,王力,张凯,魏宏超. 基于单柱齿破岩过程的高压液动冲击回转钻进试验研究. 煤田地质与勘探. 2022(12): 170-176 .
    26. 梁为民,李晓鹏,李敏敏. 冲击荷载作用下各向异性煤体中大孔结构变化规律研究. 煤炭科学技术. 2022(11): 100-109 . 本站查看

    Other cited types(4)

Catalog

    Article views (522) PDF downloads (656) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return