LI Chao,LU Yiqiang,CHEN Zhao,et al. Research status and prospect of rock breaking form in mechanized excavation of mining hard rock roadway[J]. Coal Science and Technology,2024,52(S1):259−268
. DOI: 10.13199/j.cnki.cst.2022-0211Citation: |
LI Chao,LU Yiqiang,CHEN Zhao,et al. Research status and prospect of rock breaking form in mechanized excavation of mining hard rock roadway[J]. Coal Science and Technology,2024,52(S1):259−268 . DOI: 10.13199/j.cnki.cst.2022-0211 |
Rapid excavation of hard rock tunnels was a crucial aspect in achieving intelligent and efficient coal mining. Cantilever roadheaders, TBMs, and bottom cutting equipment are all attempting to address this challenge. The development of excavation technologies and equipment directly impacts the safety and economic benefits of mining operations. Firstly, the applicable range and current status of cutting tool consumption of cantilever roadheaders in hard rock cutting conditions were summarized, followed by an analysis of on-site rock cutting experiments. The results indicated that under high rock strength conditions, cutting tool consumption doubles compared to normal wear, resulting in a mismatch between excavation speed and mining speed, severely constraining mine production. Secondly, the application of roller cutting rock breaking methods and equipment in the mining sector and the current status of new products was analyzed. The results showed that mobile mining excavation equipment using roller cutting for rock breaking results in less chunky debris, more powder, and low cutterhead thrust, leading to insufficient rock breaking capacity. Lastly, the principles and equipment development status of linear bottom cutting rock breaking technology and nonlinear bottom cutting technology were analyzed. The results demonstrated that with an increase in oscillation frequency, cutting forces significantly decreased, and nonlinear bottom cutting rock breaking consumes less energy per unit volume, showing clear advantages. However, key issues such as excavation efficiency and equipment stability in hard rock conditions remain to be verified. Nonlinear bottom cutting technology is expected to break through the technical difficulties of future hard rock excavation in mines.
[1] |
王国法,任世华,庞义辉. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8.
WANG guofa,REN shihua. Development achievements of China’coal industry durig the 13th five-year plan period and implementation path“dual carbon”target[J]. Coal Science and Technology,2021,49(9):1−8.
|
[2] |
谢和平,任世华. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.
XIE Heping,REN Shihua. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
|
[3] |
陈 浮,于昊辰,卞正富. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(6):1808−1820.
CHEN Fu,YU Haochen,BIAN Zhengfu. How to handle the crisis of coal industry in China under the vision of carbon neutrality[J]. Journal of China Coal Society,2021,46(6):1808−1820.
|
[4] |
谢和平,侯正猛. “碳中和与绿色能源”专刊前言[J]. 工程科学与技术,2022,54(1):1.
XIE Heping,HOU Zhengmeng. Introduction of carbon neutrality and green energy thematic issue[J]. Advanced Engineering Sciences,2022,54(1):1.
|
[5] |
李 伟. 深部煤炭资源智能化开采技术现状与发展方向[J]. 煤炭科学技术,2021,49(1):139−145.
LI Wei. Current status and development direction of intelligent mining technology for deep coal resources[J]. Coal Science and Technology,2021,49(1):139−145.
|
[6] |
康红普. 新时代煤炭工业高质量发展的战略思考[J]. 企业观察家,2021(6):90−91.
KANG hongpu. Strategic thinking on high quality development of coal industry in new era[J]. Enterprise Observer,2021(6):90−91.
|
[7] |
杨昊睿,宁树正,丁 恋,等. 新时期我国煤炭产业现状及对策研究[J]. 中国煤炭地质,2021,33(S1):44−48.
YANG haorui,NING Shuzheng,DING lian,et al. Chinese coal industry status quo in new period and countermeasures study[J]. Coal Geology of China,2021,33(S1):44−48.
|
[8] |
胡振琪,肖 虎. 关于煤炭工业绿色发展战略的若干思考——基于生态修复视角[J]. 煤炭科学技术,2020,48(4):35−42.
HU zhenqi,XIAO hu. Some thoughs on green development strategy of coal industry:from aspects of ecological restoration[J]. Coal Science and Technology,2020,48(4):35−42.
|
[9] |
李 伟. “双碳”目标下传统能源企业转型路径探究[J]. 中国煤炭工业,2021(12):24−27. doi: 10.3969/j.issn.1673-9612.2021.12.007
LI wei. Research on transformation path of traditional energy enterprises under dual carbon target[J]. China Coal Industry,2021(12):24−27. doi: 10.3969/j.issn.1673-9612.2021.12.007
|
[10] |
任怀伟,巩师鑫. 煤矿千米深井智能开采关键技术研究与应用[J]. 煤炭科学技术,2021,49(4):149−158.
REN Huaiwei,GONG Shixin. Research and application on key techniques of intelligent mining for kilo-meter deep coal mine[J]. Coal Science and Technology,2021,49(4):149−158.
|
[11] |
谢和平,李存宝,高明忠. 深部原位岩石力学构想与初步探索[J]. 岩石力学与工程学报,2021,40(2):217−232.
XIE Heping,LI Cunbao,GAO Mingzhong. Conceptualization andpreliminary research on deep in situ rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(2):217−232.
|
[12] |
王 勇,吴爱祥. 深部金属矿开采关键理论技术进展与展望[J]. 工程科学学报,2023,45(8):1281−1292.
WANG Yong,WU Aixiang. Progress and prospective of the mining key technology for deep metal mines[J]. Chinese Journal of Engineering,2023,45(8):1281−1292.
|
[13] |
王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报(工学版),2021,51(3):45−51.
WANG Chunguo. Study on full face hard rock tunnel boring machine through the overpass in composite stratum[J]. Journal Shandong University (Engineering Science),2021,51(3):45−51.
|
[14] |
洪开荣,冯欢欢. 近2年我国隧道及地下工程发展与思考(2019—2020年)[J]. 隧道建设(中英文),2021,41(8):1259−1280.
HONG Kairong,FENG Huanhuan. Development and thinking of tunnels and underground engineering in China in recent 2 years (from 2019 to 2020)[J]. Tunnel Construction,2021,41(8):1259−1280.
|
[15] |
李建斌. 我国掘进机研制现状、问题和展望[J]. 隧道建设(中英文),2021,41(6):877−896.
LI Jianbin. Current status,problems and prospects of research,design,and manufacturing of boring machine in China [J]. Tunnel Construction,2021,41(6):877−896.
|
[16] |
詹康乐. 硬岩振动切削数值模拟与试验研究[D]. 西安:长安大学,2021.
ZHAN Kangle. Numerical simulation and experimental study on vibration cutting of hard rock [D]. Xi’an:Chang’an University,2021.
|
[17] |
吴 鹏, 万丽荣, 逯振国. 截齿破碎煤岩力学特性及损伤研究[J]. 矿业研究与开发, 2021, 41(6): 143−148.
WU Peng, WAN Lirong, LU Zhenguo. Study on mechanical properties and damage of the broken coal rock with cutting pick.[J]. Mining Research and Development, 2021, 41(6): 143−148.
|
[18] |
万丽荣,高冠顺,逯振国. 截齿破岩力学特性与碎片分离数值模拟研究[J]. 煤炭科学技术,2022,17(2):1−10.
WAN Lirong,GAO Guanshun,LU Zhenguo. Numerical simulation of rock breaking mechanical characteristics and debris separation of pick[J]. Coal Science and Technology,2022,17(2):1−10.
|
[19] |
王少锋,李夕兵,王善勇,等. 深部硬岩截割特性及可截割性改善方法[J]. 中国有色金属学报,2022,17(2):1−14.
WANG Shaofeng,LI Xibing,WANG Shanyong. et al. Fragmentation characteristics of deep hard rock and the improvement for rock cuttability[J]. The Chinese Journal of Nonferrous Metals,2022,17(2):1−14.
|
[20] |
张倩倩. 掘进机截齿截割硬岩的试验与数值模拟研究[D]. 太原:太原理工大学,2016.
ZHANG Qianqian. Experimental and numerical research on rock cutting by roadheader picks[D]. Taiyuan :Taiyuan University of Technology,2016.
|
[21] |
RAMEZANZADEH A. A state-of-the-art review of mechanical rock excavation technologies[J]. International Journal of Mining & Environmental Issues,2010,1(1):29−40.
|
[22] |
曹 军. 矿用悬臂式纵轴掘进机断面截割技术研究[D]. 西安:西安科技大学,2018.
CAO Jun. Research on section cutting technology of the cantalever vertical axis road header[D]. Xi’an:Xi’an University of Science and Technology,2018.
|
[23] |
彭 钧,刘清伟. 悬臂式纵轴掘进机截割臂结构形式探讨[J]. 煤矿机械,2017,38(5):59−61.
PENG Jun,LIU Qingwei. Discussion about cutting arm structure of boom-type longitudinal roadheader[J]. Coal Mine Machinery,2017,38(5):59−61.
|
[24] |
黄建农. EBH300A型煤矿横轴掘进机截割部结构动态特性研究[D]. 北京:中国矿业大学(北京),2016.
HUANG Jiannong. Structure dynamic characteristics research of cutting part of EBH300A roadheader in coal mine[D]. Beijing:China University of Mining & Technology (Beijing),2016.
|
[25] |
严进辉,周坤明. 两种悬臂式掘进机的对比研究[J]. 黑龙江科技信息,2011(15):65−66.
YAN Jinhui,ZHOU Kunming. Comparative study of two kinds of cantilever road header[J]. Heilongjiang Science and Technology Information,2011(15):65−66.
|
[26] |
李晓豁,王荣昊. 影响横轴式掘进机截割机构振动特性的因素分析[J]. 中国矿业,2009,18(2):62−64.
LI Xiaohuo,WANG Ronghao. Analyzing of influencing factors of stability of cutting unit of horizontal -axial- roadheader[J]. China Mining Magazine,2009,18(2):62−64.
|
[27] |
谭顺辉. 隧道掘进机多功能化及智能化的发展与推广[J]. 隧道建设(中英文),2020,40(9):1243−1250.
TAN Shunhui. Development and application of multi-functional and intelligent tunnel boring machine[J]. Tunnel Construction,2020,40(9):1243−1250.
|
[28] |
翟 强,顾伟红. 硬岩隧道掘进机滚刀破岩性能评价研究[J]. 水资源与水工程学报,2020,31(5):225−234.
ZHAI Qiang,GU Weihong. Evaluation of rock breaking performance of TBM cutter[J]. Journal of Water Resources & Water Engineering,2020,31(5):225−234.
|
[29] |
郭成龙. 徐州地区复合地层盾构滚刀破岩力及破岩效率的研究[D]. 徐州:中国矿业大学,2021.
GUO Chenglong. Study on rock breaking force and rock breaking efficiency of shield hob in composite stratum of Xuzhou area[D]. Xuzhou:China University of Ming & Technology,2021.
|
[30] |
佘 磊,张社荣. 基于密实核理论的TBM盘形滚刀磨损预测模型研究[J]. 岩土工程学报,2022,44(5):970−978.
SHE Lei,ZHANG Sherong. Investigation on wear prediction model of TBM disc cutter based on dense core theory[J]. Chinese Journal of Geotechnical Engineering,2022,44(5):970−978.
|
[31] |
乔世范,王 超,董长瑞. 硬质岩层中TBM滚刀破岩效率预测模型研究[J]. 武汉大学学报(工学版),2021,54(12):1094−1102.
QIAO Shifan,WANG Chao,DONG Changrui. Study on prediction model of rock breaking efficiency of TBM hob in hard rock[J]. Engineering Journal of Wuhan University,2021,54(12):1094−1102.
|
[32] |
张化恳. 高地应力条件下TBM滚刀破岩影响因素优化研究及工程应用[D]. 济南:山东建筑大学,2021.
ZHANG Huaken. Optimization research and engineering application of influencing factors of TBM hob rock breaking under high ground stress[D]. Ji’nan:Shandong Jianzhu University,2021.
|
[33] |
杨皓博. 软岩平硐TBM施工围岩稳定性控制研究[D]. 西安:西安科技大学,2018.
YANG Haobo. Study on stability control of surrounding rock in soft adit TBM construction[D]. Xi’an:Xi’an University of Science and Technology,2018.
|
[34] |
巩江峰,周俊超. 截止2021年底中国铁路盾构及TBM隧道统计与分析[J]. 铁道标准设计,2022,66(3):1−5.
GONG Jiangfeng,ZHOU Junchao. Statistics and analysis of shield and TBM tunnels in China by the end of 2021[J]. Railway Standard Design,2022,66(3):1−5.
|
[35] |
秦晓光,刘林林. TBM技术在我国煤矿中的应用[J]. 低碳世界,2016(26):99−100.
QIN Xiaoguang,LIU Linlin. Application of TBM technology in coal mine of China[J]. Low Carbon World,2016(26):99−100.
|
[36] |
高润平,刘 文. 隧道掘进机在塔山煤矿平硐施工中的应用[J]. 煤矿开采,2005(5):44−46.
GAO Runping,LIU Wen. Application of tunnel boring machine in adit construction of Tashan coal mine[J]. Journal of Mining and Strata Control,2005(5):44−46.
|
[37] |
程 坤. 涝坝湾煤矿副平硐TBM施工围岩与管片变形三维模拟实验研究[D]. 西安:西安科技大学,2018.
CHEN Kun. Experimental study on 3D simulation of surrounding rock and segment deformation under TBM construction in Subadit of Waterlogging Bawan Coal Mine[D]. Xi 'an:Xi 'an University of Science and Technology,2018.
|
[38] |
刘 杰. TBM工法在煤矿斜井施工中安全防范重点及应对措施[J]. 煤矿安全,2017,48(S1):128−132.
LIU Jie. Safety precautions and countermeasures of TBM method in coal mine inclined shaft construction[J]. Safety in Coal Mines,2017,48(S1):128−132.
|
[39] |
唐 彬. 煤矿深部巷道TBM施工围岩稳定性与支护技术研究[D]. 淮南:安徽理工大学,2016.
TANG bin. Study on surrounding rock stability and support technology of deep roadway TBM construction in coal mine[D]. Huainan:Anhui University of Science& Technology,2016.
|
[40] |
张洪伟,胡兆锋. 深部高温矿井大断面岩巷TBM智能掘进技术—以“新矿1号”TBM为例[J]. 煤炭学报,2021,46(7):2174−2185.
ZHANG Hongwei,HU Zhaofeng. Intelligent TBM driving technology for large section rock roadway in deep high temperature mine -A case study of "Xinkuang No. 1" TBM[J]. Journal of China Coal Society,2021,46(7):2174−2185.
|
[41] |
王玉杰,沈 强,曹瑞琅. 大变形围岩TBM施工适应性分类标准研究[J]. 隧道与地下工程灾害防治,2020,2(4):37−43.
WANG Yujie,SHEN Qiang,CAO Ruilang. Study on classification standard of TBM construction adaptability for large deformation surrounding rock[J]. Hazard Control in Tunnelling and Underground Engineering,2020,2(4):37−43.
|
[42] |
BAO Gang,MU Wenkun. Excavation rate “predicting while tunnelling” for double shield TBMs in moderate strength poor to good quality rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2022,149:104988. doi: 10.1016/j.ijrmms.2021.104988
|
[43] |
谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.
XIE Heping. Research progress of deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.
|
[44] |
VOGT D. A review of rock cutting forunderground mining:past,present,andfuture[J]. The Journal of the Southern African Institute of Mining and Metallurgy,2016,116:1011−1026. doi: 10.17159/2411-9717/2016/v116n11a3
|
[45] |
孟庆丰. ODC刀盘硬岩截割机理研究[D]. 徐州:中国矿业大学,2019.
MENG Qingfeng. Study on the cutting mechanism of hard rock by ODC disk-cutter technology [D]. Xuzhou:China University of Ming & Technology,2019.
|
[46] |
GRASHOF B G. Oscillating disc technology for rock excavation[D]. Delft:Delft University of Technology,2019.
|
[47] |
HOOD M,ALEHOSSEIN H. A development in rock cutting technology[J]. International Journal of Rock Mechanics & Mining Sciences,2000,37(1/2):297−305.
|
[48] |
KAREKAL S. Oscillating disc cutting technique for hard rock excavation[J/OL]. American Rock Mechanics Association,2013,DOI:http://dx. doi.org/.
|
[49] |
HOOD M,GUAN Z. The benefits of oscillating disc cutting[A]. 2005 Australian Mining Technology Conference[C]. The Australasian Institute of Mining and Metallurgy,2005:267-278.
|
[50] |
KOVALYSHEN Y. Analytical model of oscillatory disc cutting[J]. International Journal of Rock Mechanics & Mining Sciences,2015,77:378−383.
|
[51] |
DEHKHODA S,DETOURNAY E. Mechanics of actuated disc cutting[J]. Rock Mechanics & Rock Engineering,2017,50:1−19.
|
[52] |
ISAAC DZAKPATA. Application of continuous mechanical cutting to coal overburden removal[A]. Proceedings of the 2020 Coal Operators' Conference[C]. 2020:186−197
|
[53] |
蔡芝源. 滚刀振动切削破岩性能及动力学研究[D]. 徐州:中国矿业大学,2021.
CAI zhiyuan. Study on rock breaking energy and dynamics of hob vibration cutting[D]. Xuzhou:China University of Ming & Technology,2021.
|