Citation: | ZHANG Yuan,TA Xupeng,SHI Peng,et al. Energy storage via storing flood in abandoned mines and low temperature heat energy utilization from mine water[J]. Coal Science and Technology,2023,51(6):197−204. DOI: 10.13199/j.cnki.cst.2022-0323 |
The utilization of underground space in abandoned mines is a key direction supported by the coal industry. By combining underground space utilization, flood storage, and heat supply in winter, this paper proposes a comprehensive utilization model of flood storage and heat extraction in the abandoned mine, based on three technologies: ground flood diversion, underground flood storage and heat pump. This paper addresses the concept, key technologies and scientific issues of the model. The distribution of abandoned mines in China and its relationship with precipitation distribution were analyzed. The potential for flood and energy storage in abandoned mine was also studied. Results showed that 13 provinces, including Anhui, Henan, and Shandong province, can utilize approximately 60 million cubic meters of underground space and store nearly 6 volumes of West Lake water, making it suitable for engineering demonstration of flood storage and heat extraction in abandoned mines. Among them, five abandoned mines in Huainan mining area can utilize approximately 300 000 cubic meters of underground space, with energy storage capacity of up to 94 500 GJ that can meet the heating demand of 210 000 square meters. Taking Qishan Mine as an example, a scheme was designed based on ground flood diversion and storage, underground water storage, and mine water extraction and utilization. According to preliminary calculations, the heating power of Qishan Mine can reach 6 835 kW which can provide heating for 136 700 square meters of buildings, reduce carbon dioxide emissions by about 5 330 tons, and save 3.507 5 million yuan. This demonstrates the feasibility of flood and energy storage in abandoned underground space. Research showed that the comprehensive utilization model of flood storage, energy storage, and heat extraction in abandoned mines can not only effectively utilize the underground space of abandoned mines but also alleviate local flood disasters during the flood season. It can develop low-grade clean energy in mine water and has certain significance in improving the added value of underground space utilization in abandoned mines and promoting the utilization of underground space in abandoned mines.
[1] |
袁 亮,姜耀东,王 凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.
YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed / abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
|
[2] |
孟召平,李国富,田永东,等. 晋城矿区废弃矿井采空区煤层气地面抽采研究进展[J]. 煤炭科学技术,2022,50(1):204−211.
MENG Zhaoping,LI Guofu,TIAN Yongdong,et al. Research progress on surface drainage of coalbed methanein abandoned mine gobs of Jincheng mining area[J]. Coal Science and Technology,2022,50(1):204−211.
|
[3] |
谢和平,高明忠,高 峰,等. 关停矿井转型升级战略构想与关键技术[J]. 煤炭学报,2017,42(6):1355−1365.
XIE Ping,GAO Mingzhong,GAO Feng,et al. The strategic concept and key technologies of the transformation and upgrading of the closed mine[J]. Journal of China Coal Society,2017,42(6):1355−1365.
|
[4] |
武 俐,曹 斌,李怀珍,等. ASE萃取对低、中阶煤增产生物气的研究[J]. 煤炭科学技术,2022,50(2):334−340.
WU Li,CAO Bin,LI Huaizhen,et al. Study on biogas production of low and medium rank coals by ASE extraction[J]. Coal Science and Technology,2022,50(2):334−340.
|
[5] |
刘 峰,李树志. 我国转型煤矿井下空间资源开发利用新方向探讨[J]. 煤炭学报,2017,49(9):2205−2213.
Liu Feng,Li Shuzhi. The new direction of development and utilization of underground space resources in transition coal mines in China[J]. Journal of China Coal Society,2017,49(9):2205−2213.
|
[6] |
谢友泉,高 辉,苏志国. 废弃矿井地热资源的开发利用[J]. 太阳能,2020(10):6.
XIE Youquan,GAO Hui,SU Zhiguo,et al. Development and utilization of geothermal resources in abandoned mines[J]. Solar energy,2020(10):6.
|
[7] |
GUO P,ZHENG L,SUN X,et al. Sustainability evaluation model of geothermal resources in abandoned coal mine[J]. Applied Thermal Engineering,2018,144:804−811. doi: 10.1016/j.applthermaleng.2018.06.070
|
[8] |
DÍEZ R R,DÍAZ-AGUADO M B. Estimating limits for the geothermal energy potential of abandoned underground coal mines: A simple methodology[J]. Energies,2014,7(7):4241−4260. doi: 10.3390/en7074241
|
[9] |
赵东亮,李 勇,代彦军. 季节性蓄热太阳能集中供热系统[J]. 太阳能,2011(3):26−31.
Zhao Dongliang,Li Yong,Dai Yanjun. Seasonal regenerative solar central heating system[J]. Solar Energy,2011(3):26−31.
|
[10] |
MICHAL Vokurka, ANTONÍN Kunz. Case Study of Using the Geothermal Potential of MineWater for Central District Heating—The Rožná Deposit, Czech Republic[J]. Sustainability, 2022, 14: 2016.https://doi.org/10.3390/ su14042016.
|
[11] |
吴金焱. 荷兰海尔伦市废弃煤矿矿井水地热能开发利用工程实践[J]. 中国煤炭,2020,46(1):94−98.
WU Jinyan. Practice on geothermal energy development and utilization from abandoned coal mine water in Heerlen of Netherlands[J]. China Coal,2020,46(1):94−98.
|
[12] |
殷方圆,殷淑燕. 1960-2012年我国夏季降水的时空分布特征[J]. 陕西师范大学学报(自科版),2015(3):80−85.
YIN Fangyuan,YIN Shuyan. Temporal and spatial distribution characteristics of summer precipitation in China from 1960 to 2012[J]. Journal of Shaanxi Normal University (self-edition),2015(3):80−85.
|
[13] |
曹思沁. 我国现代降水时频分布特征分析与预测综述[J]. 科技展望,2016,26(36):275.
CAO Siqin. Analysis and prediction of time-frequency distribution characteristics of modern precipitation in China[J]. Technology prospect,2016,26(36):275.
|
[14] |
谢和平,高明忠,刘见中,等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报,2018,43(6):1484−1503.
XIE Heping,GAO Mingzhong,LIU Jianzhong,et al. Research on capacity estimation and development and utilization of underground space in coal mines[J]. Journal of China Coal Society,2018,43(6):1484−1503.
|
[15] |
吴燕娟. 气候变化背景下我国极端降水的时空分布特征和未来预估[D]. 上海: 上海师范大学, 2016.
WU Yanjuan Spatial and temporal distribution characteristics and future projections of extreme precipitation in China under the background of climate change [D]. Shanghai: Shanghai Normal University, 2016.
|
[16] |
王莉萍,王维国,张建忠. 我国主要流域降水过程时空分布特征分析[J]. 自然灾害学报,2018,27(2):161−173.
WANG Liping,WANG Weiguo,ZHANG Jianzhong. The spatial and temporal distribution characteristics of precipitation processes in major basins in China[J]. Journal of Natural Disasters,2018,27(2):161−173.
|
[17] |
张霖琳,张珺琳,刘道会,等. 蒙洼泄洪区补偿机制存在的问题与对策分析:基于安徽阜南蒙洼泄洪区的典型案例调查[J]. 产业与科技论坛,2010,9(11):132−134.
ZHANG Linlin,ZHANG Junlin,LIU Daohui,et al. Mengwa flood discharge area compensation mechanism problems and countermeasures analysis - Based on the typical case investigation of Funan Mengwa flood discharge area[J]. Industry and Technology Forum,2010,9(11):132−134.
|
[18] |
蔡 敏. 安徽省将投入11亿元积极推进中小河流治理进程[EB/OL]. (2009-11-29)[2022-03-08]. https://www.gov.cn/jrzg/2009-11/29/content_1475872.htm.
|
[19] |
ZHANG Yuan,WAN Zhi-jun,GU Bin,ZHOU Chang-bing,CHENG Jing-yi. Unsteady temperature field of surrounding rock mass in high geothermal roadway during mechanical ventilation[J]. J. Cent. South Univ.,2017,24(2):374−381. doi: 10.1007/s11771-017-3439-3
|
[20] |
万志军,毕世科,张 源,等. 煤-热共采的理论与技术框架[J]. 煤炭学报,2018,43(8):2099−2106.
WAN Zhijun,BI Shike,ZHANG Yuan,et al. Theoretical and technical framework of coal-thermal co-mining[J]. Coal Journal,2018,43(8):2099−2106.
|
[21] |
JIANG G,HU S,SHI Y,et al. Terrestrial heat flow of continental China: Updated dataset and tectonic implications[J]. Tectonophysics,2019,753:36−48. doi: 10.1016/j.tecto.2019.01.006
|
[22] |
胡 平,刘 毅,唐忠敏,等. 水库水温数值预测方法[J]. 水利学报,2010,41(9):1045−1053.
HU Ping,LIU Yi,TANG Zhongmin,et al. Numerical prediction of water temperature in reservoir[J]. Shuili Xuebao,2010,41(9):1045−1053.
|
[23] |
鲍其钢,乔光建. 水库水温分层对农业灌溉影响机理分析[J]. 南水北调与水利科技,2011,9(2):69−72.
BAO Qigang,QIAO Guangjian. Impacts of Reservoir Water Temperature Stratification on Agricultural Irrigation[J]. South-to-North Water Diversion and Water Science & Technology,2011,9(2):69−72.
|
[24] |
吴基文,王广涛,翟晓荣,等. 淮南矿区地热地质特征与地热资源评价[J]. 煤炭学报,2019,44(8):2566−2578.
WU Jiwen,WANG Guangtao,ZHAI Xiaorong,et al. Geothermal geological characteristics and geothermal resources evaluation of Huainan mining area[J]. Journal of China Coal Society,2019,44(8):2566−2578.
|
1. |
王军. 基于采空区地面井抽采数据评估煤矿卸压开采性能研究. 山西化工. 2024(08): 223-225 .
![]() | |
2. |
赵军利. 地面L型井顶板分段压裂技术在突出煤层中的应用. 煤矿现代化. 2023(02): 30-33 .
![]() | |
3. |
张超,范富槐,李树刚,翟成,江丙友,杨朴超,曾祥真. 基于微胶囊技术的瓦斯抽采钻孔密封材料研究. 煤炭科学技术. 2023(04): 72-79 .
![]() | |
4. |
王媛彬,李媛媛,韩骞,李瑜杰,周冲. 基于PCA-BO-XGBoost的矿井回采工作面瓦斯涌出量预测. 西安科技大学学报. 2022(02): 371-379 .
![]() | |
5. |
程士宜,李文超. 改善松软煤层抽采孔砂岩孔壁力学行为研究. 煤矿安全. 2022(10): 243-247 .
![]() | |
6. |
文建东,苗在全,高璐,荆士杰. 地面钻孔抽采对采空区自燃“三带”的影响研究. 能源与环保. 2022(12): 301-306 .
![]() | |
7. |
龙红军. 屯兰煤矿地面井压裂抽采瓦斯效果及影响范围. 煤炭科技. 2022(06): 86-90+95 .
![]() | |
8. |
吴向. 王峰煤矿地面L型井压裂抽采瓦斯工程实践. 内蒙古煤炭经济. 2022(24): 25-27 .
![]() | |
9. |
张尧兵. 工作面地面井瓦斯治理技术的可行性论证. 河南科技. 2021(12): 81-83 .
![]() |