Advance Search

CHEN Qingguang,XU Yanhui,GUO Wu,et al. Influence of axial spacing on stall development of FBCDZ-10-No20 mode contra-rotating fan[J]. Coal Science and Technology,2023,51(6):229−236

. DOI: 10.13199/j.cnki.cst.2022-0600
Citation:

CHEN Qingguang,XU Yanhui,GUO Wu,et al. Influence of axial spacing on stall development of FBCDZ-10-No20 mode contra-rotating fan[J]. Coal Science and Technology,2023,51(6):229−236

. DOI: 10.13199/j.cnki.cst.2022-0600

Influence of axial spacing on stall development of FBCDZ-10-No20 mode contra-rotating fan

Funds: 

Natural Science Foundation of Shandong Province (ZR2021ME242)

More Information
  • Received Date: April 27, 2022
  • Available Online: June 05, 2023
  • The rotating fan is prone to instability such as stall and even surge when operating at low flow rates. In order to study the influence of axial spacings on the stall inception and its development and propagation process of a contra-rotating fan , a Shear Stress Transport(SST)k-ωturbulence model was used to numerically simulate the unsteady flow in the whole passage of a FBCDZ-10-No20 contra-rotating fan. The stall evolution of fan under two axial spacings are investigated. The results show that the axial spacing has significant influence on the inception and development of fan stall.In the stall inception stage, when the axial spacing between the two-stage impellers is 170 mm, the stall inception first occurs within the rear impeller, which locates in the trailing edge area on the suction surface of the blade root. Then stall inception develops from the blade root to the tip area along the radial direction, and accumulates towards a blade passage along the circumferential direction and falls off on the way to form a blocking area, which eventually leads to stall. When the axial spacing is 70 mm, the stall inception successively occurs the tip area of the two-stage impellers. Then stall inception keeps increasing, which eventually leads to stall. During the full stall stage, the axial spacing has a significant effect on the propagation of the stall vortex in the circumferential, axial and radial directions. When the axial spacing is 170 mm, the type of stall vortex shows the single vortex full-blade high stall. The propagation range of the stall vortex in the axial direction is limited to the region of rear impeller, and rotates at 33.3% of the rear impeller speed in the circumferential direction; When the axial spacing is 70 mm, the type of stall vortex shows the multi-vortex partial blade high stall. The stall vortex are successively generated in the tip area of the two-stage impellers, propagating upward and downstream in the axial direction, and are dispersed in the area above 70% of the blade height of each blade channel in the radial direction. Due to the change of the axial distance between the two-stage impellers, the type of stall inception of the fan is changed from “partial surge type” to “Spike-type”.

  • [1]
    JIANG C L,LI M J,LI Enda,et al. Investigation on unsteady flow characteristics in an axial-flow fan under stall conditions[J]. Processes,2020,8(8):958. doi: 10.3390/pr8080958
    [2]
    钟兢军,阚晓旭. 高负荷压气机叶栅内三维旋涡结构及其形成机理的研究进展[J]. 推进技术,2020,41(9):1946−1957.

    ZHONG Jingjun,KAN Xiaoxu. Research progress on three-dimensional vortex structures and formation mechanism of high-loaded compressor cascades[J]. Journal of Propulsion Technology,2020,41(9):1946−1957.
    [3]
    王仲奇,王松涛,张龙新. 轴向间距对低反力度压气机性能影响的二维非定常数值研究[J]. 推进技术,2017,38(10):2218−2223.

    WANG Zhongqi,WANG Songtao,ZHANG Longxin. Performance evaluation of a low-reaction compressor with different axial spacing by 2D unsteady simulation[J]. Journal of Propulsion Technology,2017,38(10):2218−2223.
    [4]
    陈庆光,郭自超,王默晗. FBCDZ-10-No36型通风机进气风道气流稳定性分析[J]. 煤炭科学技术,2017,45(11):155−160.

    CHEN Qingguang,GUO Zichao,WANG Mohan. Analysis on stability of air flow in intake air duct of FBCDZ-10-No36 mode ventilator[J]. Coal Science and Technology,2017,45(11):155−160.
    [5]
    MOORE F K,GREITZER E M. A theory of post-stall transients in axial compressors: part i-development of the equations[J]. Journal of Engineering for Gas Turbines and Power,1986,108(1):68−76. doi: 10.1115/1.3239887
    [6]
    VO H D,TAN C S,GREITZER E M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery,2008,130(1):011023−011031. doi: 10.1115/1.2750674
    [7]
    DELL'ERA G,HABOTTE N,DESSET J,et al. Experimental characterization of stall phenomena in a single-stage low-pressure axial compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power & Energy,2015,229(5):549−559.
    [8]
    YAMADA K,FURUKAWA M,TAMURA Y,et al. Large-scale detached-eddy simulation analysis of stall inception process in a multistage axial flow compressor[J]. Journal of Turbomachinery,2017,139(7):1−11.
    [9]
    李思敏,潘天宇,李志平,等. 圆弧槽处理机匣对影响跨声速压气机[J]. 推进技术,2017,38(12):2667−2673.

    LI Simin,PAN Tianyu,LI Zhiping,et al. Experimental study on hub stall instability evolution in a transonic compressor with arc-shaped slot casing treatment[J]. Journal of Propulsion Technology,2017,38(12):2667−2673.
    [10]
    PAN T Y,LI Q S,LI Z P,et al. Effects of radial loading distribution on partial-surge-initiated instability in a transonic axial flow compressor[J]. Journal of Turbomachinery,2017,139(10):1−13.
    [11]
    武文倩,胡加国,潘天宇,等. 叶根失速先兆触发跨声速压气机失速的机制研究[J]. 推进技术,2017,38(10):2340−2347. doi: 10.13675/j.cnki.tjjs.2017.10.021

    WU Wenqian,HU Jiaguo,PAN Tianyu,et al. Mechanism study of stall triggered by hub region inception in a transonic compressor[J]. Journal of Propulsion Technology,2017,38(10):2340−2347. doi: 10.13675/j.cnki.tjjs.2017.10.021
    [12]
    XU H,JIN D H,SUN D K,et al. Effect of rotor-stator axial spacing on the pressure-rise performance and flow field in an axial pump[J]. Proceedings of the Institution of Mechanical Engineers-Part A-Power & Energy,2019,233(6):727−737.
    [13]
    李传鹏,胡 骏,王英锋,等. 轴向间距对压气机失速特性的影响[J]. 工程热物理学报,2005(2):246−248. doi: 10.3321/j.issn:0253-231X.2005.02.020

    LI Chuanpeng,HU Jun,WANG Yingfeng,et al. Effects of axial spacing on compressor stalling characteristics[J]. Journal of Engineering Thermophysics,2005(2):246−248. doi: 10.3321/j.issn:0253-231X.2005.02.020
    [14]
    HEWKIN-SMITH M,PULLAN G,GRIMSSHAW S D. The role of tip leakage flow in spike-type rotating stall inception[J]. Journal of Turbomachinery,2019,141(6):061010. doi: 10.1115/1.4042250
    [15]
    杜 娟,王偲臣,李继超,等. 轴流压气机叶顶泄漏流与突尖先兆失稳机理的研究进展[J]. 推进技术,2017,38(10):2208−2217. doi: 10.13675/j.cnki.tjjs.2017.10.006

    DU Juan,WANG Sichen,LI Jichao,et al. Research progress on tip leakage flow and spike-inception stall mechanism in axial compressors[J]. Journal of Propulsion Technology,2017,38(10):2208−2217. doi: 10.13675/j.cnki.tjjs.2017.10.006
    [16]
    JIANG B,SHI X T,ZHENG Q,et al. The relationship of spike stall and hub corner separation in axial compressor[J]. International Journal of Turbo & Jet-Engines,2020,37(1):1−16.
    [17]
    强冠杰,乔渭阳,Hashmi S F,等. 轴流风扇“尖峰型”失速起始特征及其物理机制的实验及数值研究[J]. 推进技术,2017,38(3):539−550. doi: 10.13675/j.cnki.tjjs.2017.03.009

    QIANG Guanjie,QIAO Weiyang,HASHMI S F,et al. Experiment and numerical investigation of spike rotating stall inception and physical mechanism with single stage axial-flow fan[J]. Journal of Propulsion Technology,2017,38(3):539−550. doi: 10.13675/j.cnki.tjjs.2017.03.009
    [18]
    ZHANG L,ZHANG Q. Effects of the second-stage of rotor with single abnormal blade angle on rotating stall of a two-stage variable pitch axial fan[J]. Energies,2018,11(12):3293−3311. doi: 10.3390/en11123293
    [19]
    EMMONS H W,PEARSON C E,GRANT H P. Compressor surge and stall propagation[J]. Transactions of the ASME,1955,77(3):455−469.
    [20]
    陈庆光,邹璐瑶,李 哲,等. 畸变进气条件下压入式矿用对旋主通风机失速机理研究[J]. 机械科学与技术,2021,40(5):670−677. doi: 10.13433/j.cnki.1003-8728.20200114

    CHEN Qingguang,ZOU Luyao,LI Zhe,et al. Study on stall mechanism of mining contra-rotating main fan for forced type ventilation under distortion air intake condition[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(5):670−677. doi: 10.13433/j.cnki.1003-8728.20200114
  • Related Articles

    [1]LIANG Bing, XING Jingchao, SUN Weiji, FANG Shengjie. Mechanisms and three-dimensional spatial characteristics of fissures induced under the influence of fracture of mining overburden rocks[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 107-121. DOI: 10.12438/cst.2024-0764
    [2]LIU Qi, DA Yuxin, CAO Guangyong, LI Qinghai, ZHAO Jinhai, JIANG Changbao. Study on influence of fracture development process on compaction area of overlying strata in working face[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(5): 25-35. DOI: 10.12438/cst.2023-0792
    [3]RAN Qican, LIANG Yunpei, ZOU Quanle, ZHANG Bichuan. Asymmetric characteristics of “three-field” in overburden of inclined coal seam groups and target extraction mechanism[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 177-192. DOI: 10.12438/cst.2024-0068
    [4]HU Shanchao, HAN Jinming, HUANG Junhong, PING Lifen, CHENG Yafei, GAO Zhihao, GUO Shihao, YANG Lei. Study on meso-fracture and energy evolution law of rock under sleeve fracturing[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(2): 79-91. DOI: 10.12438/cst.2023-1438
    [5]LIN Haifei, WANG Xu, XU Peiyun, KONG Xiangguo, SHUANG Haiqing, ZHAO Pengxiang. Evolution characteristics analysis and engineering application of pressure-relieved gas reservoir in extra-thick coal seam mining[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(2): 173-182. DOI: 10.13199/j.cnki.cst.2020–1291
    [6]LI Shugang, LIU Lidong, ZHAO Pengxiang, LIN Haifei, XU Peiyun, ZHUO Risheng. Analysis and application of fracture evolution law of overburden compacted area on fully-mechanized mining face under multiple factors[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 95-104.
    [7]YAN Baoyong CAO Liu ZHANG Jiagui, . Exploration on gas drainage technology and equipment of fracture zone in coal seam roof[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(10).
    [8]LI Shugang, XU Peiyun, ZHAO Pengxiang, LIN Haifei. Aging induced effect of elliptic paraboloid zone in mining cracks and pressure released gas drainage technique[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (9).
    [9]HUANG Jing-en CHENG Zhi-heng QI Qing-xin JI Wen-bo ZHANG-Lang, . Gas Drainage Technology of Mining Fractured Zone in High Gassy and Contiguous Seams[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (8).
    [10]WANG Yao_feng NIE Rong-shan, . Study on High Level Borehole Optimization Based on Evolving Characteristics of Mining Induced Fracture[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (6).
  • Cited by

    Periodical cited type(5)

    1. 郭文兵,胡玉杭,胡超群,李龙翔,吴东涛,葛志博. 我国“三下”采煤技术体系与工程实践. 煤炭科学技术. 2025(01): 19-38 . 本站查看
    2. 孙德宁. 采动影响下高压线塔基可调式基础改造加固技术研究. 煤矿现代化. 2024(01): 52-55+60 .
    3. 顾伟,王允卿. 厚硬覆岩下巨厚煤层开采转角塔塔线体稳定性演化特征研究. 采矿与安全工程学报. 2024(04): 730-740 .
    4. 夏军武,周宇,朱致淳,何源,于峻. 采煤沉陷区框架结构抗变形研究现状与展望. 煤炭工程. 2024(10): 100-107 .
    5. 隋来才,刘少炜,张普纲,芦文增,赵国贞,高强,赵建忠. 煤矿地下精准注浆技术与发展现状. 煤炭技术. 2024(11): 161-165 .

    Other cited types(1)

Catalog

    Article views (82) PDF downloads (24) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return