Advance Search

YAN Zhirui,WANG Hongwei,GENG Yide. Coal-rock interface image recognition method based on improved DeeplabV3+ and transfer learning[J]. Coal Science and Technology,2023,51(S1):429−439

. DOI: 10.13199/j.cnki.cst.2022-1392
Citation:

YAN Zhirui,WANG Hongwei,GENG Yide. Coal-rock interface image recognition method based on improved DeeplabV3+ and transfer learning[J]. Coal Science and Technology,2023,51(S1):429−439

. DOI: 10.13199/j.cnki.cst.2022-1392

Coal-rock interface image recognition method based on improved DeeplabV3+ and transfer learning

Funds: 

National Key Research and Development Program of China (2020YFB1314000); Shanxi Province Science and Technology Plan bidding project (20201101008); Shanxi Applied Basic Research Project (202103021223123)

More Information
  • Received Date: August 26, 2022
  • Available Online: August 13, 2023
  • Coal-rock identification is one of the key technologies to realize intelligent and unmanned mining. To further improve the accuracy and efficiency of coal-rock interface image recognition based on machine vision, a coal-rock interface image recognition network model based on the improved DeeplabV3+ and transfer learning is proposed. Firstly, the lightweight MobilenetV2 module is used as the backbone feature extraction network to reduce the net-work model parameters and improve the semantic segmentation efficiency; Secondly, the Convolutional Block Attention Module (CBAM) is introduced into the encoder and decoder to improve the model feature extraction ability, effectively fuse feature information at different levels, and improve the model segmentation accuracy; Thirdly, the transfer learning training method is adopted to overcome the difference of sample distribution and enhance the generalization of the model, so as to adapt to the coal-rock recognition tasks in different application scenarios. The performance of the model is verified by using the self-made coal rock segmentation data set and the coal rock segmentation dataset of the fully-mechanized mining face. The model is compared with FCN, SegNet, U-net, DeeplabV3+network models, and the accuracy, average intersection ratio, and inference time indexes are selected to evaluate the model recognition effect. The ablation experiment results show that the accuracy and the mean intersection over union of the improved DeeplabV3+ network model in the self-made coal-rock segmentation dataset are 94.67% and 93.48%, respectively, and the test time is 42.58 ms·sheet-1. In addition, the model inference time can reach 6.14 ms·sheet-1 after optimization with the inference acceleration framework TensorRT. Compared with other models, the improved DeeplabV3+ shows stronger ability to extract detailed features of coal-rock boundaries, higher segmentation accuracy and processing efficiency. Finally, the dataset of coal-rock image segmentation with coal-rock layers in the fully mechanized mining face is constructed. The improved DeepLabV3+model is trained and tested on the dataset by using the transfer learning method, which realizes the coal-rock interface image recognition of the underground fully mechanized mining face, and verifies the feasibility and stability of this method in the actual coal rock image recognition task.

  • [1]
    科技部, 教育部. 关于加快煤矿智能化发展的指导意见(发改能源〔2020〕283号) [R]. 2020.

    Ministry of Science and Technology of the People´s Republic of China, Ministry of Education of the People's Republic of China. Guiding opinions on accelerating the intelligent development of coal mines [R]. 2020
    [2]
    王国法,刘 峰,庞义辉,等. 煤矿智能化—煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349−357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization: The core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349−357.
    [3]
    索智文. 煤矿综采工作面无人化开采技术研究[J]. 工矿自动化,2017,43(1):22−26. doi: 10.13272/j.issn.1671-251x.2017.01.006

    SUO Zhiwen. Study on unmanned mining technology of fully mechanized coal mining face[J]. Journal of Mine Automation,2017,43(1):22−26. doi: 10.13272/j.issn.1671-251x.2017.01.006
    [4]
    杨健健,张 强,王 超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995−3005. doi: 10.13225/j.cnki.jccs.2019.1452

    YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on road header for coal mines[J]. Journal of China Coal Society,2020,45(8):2995−3005. doi: 10.13225/j.cnki.jccs.2019.1452
    [5]
    张 强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1−7. doi: 10.13199/j.cnki.cst.2021-1333

    ZHANG Qiang,ZHANG Runxin,LIU Junming. Review on coal and rock identification technology for intelligent mining in coal mine[J]. Coal Science and Technology,2022,50(2):1−7. doi: 10.13199/j.cnki.cst.2021-1333
    [6]
    LUO Chenxu,QIAO Junbei,ZHOU Jiawei,et al. Cutting mechanical study of pick cutting coal seams with coal and rock interface[J]. Energy Reports,2022,8(2):51−59.
    [7]
    XU Jing,WANG Zhongbin,TAN Chao,et al. Cutting pattern identification for coal mining shearer through sound signals based on a convolutional neural network[J]. Symmetry,2018,10(12):736. doi: 10.3390/sym10120736
    [8]
    SI Lei,WANG Zhongbin,TAN Chao,et al. A sensing identification method for shearer cutting state based on modified multi-scale fuzzy entropy and support vector machine[J]. Engineering Applications of Artificial Intelligence,2019,78:86−101. doi: 10.1016/j.engappai.2018.11.003
    [9]
    GUO Huiling,LIU Xin. Coal-rock interface recognition method based on image recognition[J]. Nature Environment and Pollution Technology,2019,18(5):1627−1633.
    [10]
    MENG Huiling,LI Man. Characteristic analysis and recognition of coal-rock interface based on visual technology[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition,2016,9(4):61−68. doi: 10.14257/ijsip.2016.9.4.06
    [11]
    WANG Haijian,ZHANG Qiang. Dynamic identification of coal-rock interface based on adaptive weight optimization and multi-sensor information fusion[J]. Information Fusion,2019,51:114−128. doi: 10.1016/j.inffus.2018.09.007
    [12]
    孙继平,杨 坤. 一种煤岩图像特征提取与识别方法[J]. 工矿自动化,2017,43(5):1−5. doi: 10.13272/j.issn.1671-251x.2017.05.001

    SUN Jiping,YANG Kun. A coal-rock image feature extraction and recognition method[J]. Industry and Mine Automation,2017,43(5):1−5. doi: 10.13272/j.issn.1671-251x.2017.05.001
    [13]
    伍云霞,田一民. 基于字典学习的煤岩图像特征提取与识别方法[J]. 煤炭学报,2016,41(12):3190−3196. doi: 10.13225/j.cnki.jccs.2016.1205

    WU Yunxia,TIAN Yimin. Method of coal-rock image feature extraction and recognition based on dictionary learning[J]. Journal of China Coal Society,2016,41(12):3190−3196. doi: 10.13225/j.cnki.jccs.2016.1205
    [14]
    伍云霞,孟祥龙. 局部约束的自学习煤岩识别方法[J]. 煤炭学报,2018,43(9):2639−2646. doi: 10.13225/j.cnki.jccs.2018.0385

    WU Yunxia,XIANG Menglong. Locality-constrained self-taught learning for coal-rock recognition[J]. Journal of China Coal Society,2018,43(9):2639−2646. doi: 10.13225/j.cnki.jccs.2018.0385
    [15]
    张 婷. 基于变换域与高斯混合模型聚类的煤岩识别方法[J]. 煤炭技术,2018,37(11):320−323. doi: 10.13301/j.cnki.ct.2018.11.120

    ZHANG Ting. Coal and rock recognition method based on transform domain and clustering of gaussian mixture mode[J]. Coal Technology,2018,37(11):320−323. doi: 10.13301/j.cnki.ct.2018.11.120
    [16]
    张 斌,苏学贵,段振雄,等. YOLOv2在煤岩智能识别与定位中的应用研究[J]. 采矿与岩层控制工程学报,2020,2(2):94−101.

    ZHANG Bin,SU Xuegui,DUAN Zhenxiong,et al. Application of YOLOv2 in intelligent recognition and location of coal and rock[J]. Journal of Mining and Strata Control Engineering,2020,2(2):94−101.
    [17]
    司 垒,王忠宾,熊祥祥,等. 基于改进U-net网络模型的综采工作面煤岩识别方法[J]. 煤炭学报,2021,46(S1):578−589. doi: 10.13225/j.cnki.jccs.2020.1011

    SI Lei,WANG Zhongbin,XIONG Xiangxiang,et al. Coal-rock recognition method of fully-mechanized coal mining face based on improved U-net network model[J]. Journal of China Coal Society,2021,46(S1):578−589. doi: 10.13225/j.cnki.jccs.2020.1011
    [18]
    高 峰,殷 欣,刘泉声,等. 基于塔式池化架构的采掘工作面煤岩图像识别方法[J]. 煤炭学报,2021,46(12):4088−4102. doi: 10.13225/j.cnki.jccs.2021.0624

    GAO Feng,YIN Xin,LIU Quansheng,et al. Coal-rock image recognition method for mining and heading face based on spatial pyramid pooling structure[J]. Journal of China Coal Society,2021,46(12):4088−4102. doi: 10.13225/j.cnki.jccs.2021.0624
    [19]
    CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-Decoder with atrous separable convolution for semantic image segmentation[J]. Springer, Cham. 2018. [C]//European Conference on Computer Vision, Springer, Cham, 2018: 1−15.
    [20]
    SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510−4520.
    [21]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3−19
  • Related Articles

    [1]WANG Yuanbin, GUO Yaru, LIU Jia, WANG Xu, WU Bingchao, LIU Meng. Low illumination image enhancement algorithm of CycleGAN coal mine based on attention mechanism and Dilated convolution[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 375-383. DOI: 10.12438/cst.2023-1597
    [2]DONG Fei, ZHANG Di, GE Kunpeng, CHEN Junjie, XU Xinyue. Fault diagnosis and inference of hoist main bearing based on transfer learning and ontology[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 249-266. DOI: 10.12438/cst.2024-0606
    [3]CHEN Wei, REN Peng, AN Wenni, TIAN Zijian, ZHANG Fan. Mine object detection based on space attention in coal mine edge intelligent surveillance images[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 201-210. DOI: 10.12438/cst.2022-2140
    [4]CUI Wei, MENG Guoying, WAN Xingwei. Fault diagnosis method of rolling bearing of mine main fan based on transfer learning[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 280-287. DOI: 10.12438/cst.2023-0903
    [5]CHENG Jian, MI Lifei, LI Hao, LI Heping, WANG Guangfu, MA Yongzhuang. Coalmine image super-resolution reconstruction via fusing multi-dimensional feature and residual attention network[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(11): 117-128. DOI: 10.12438/cst.2024-1055
    [6]WANG Maosen, BAO Jiusheng, BAO Zhouyang, YIN Yan, WANG Xiangsai, GE Shirong. Research on mine underground inspection robot target detection algorithm based on pyramid structure and attention mechanism coupling[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(6): 206-215. DOI: 10.12438/cst.2023-1071
    [7]ZHANG Xuhui, PAN Gege, GUO Huanhuan, MAO Qinghua, FAN Hongwei, WAN Xiang. Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 256-263.
    [8]WANG Peizhen, YU Chen, XUE Zihan, ZHANG Dailin. Transfer learning based identification model for macerals of exinite in coal[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 220-227.
    [9]GAO Yasong, ZHANG Buqin, LANG Liying. Coal and gangue recognition technology and implementation based on deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(12): 202-208.
    [10]ZHANG Zelin, ZHANG Zhiwei, HU Qi, WANG Li. Study on multi-product coal image classification method based on deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 117-123.
  • Cited by

    Periodical cited type(12)

    1. 赵娅,管玉,贾迪. 基于深度学习的微观剩余油赋存形态分类识别综述. 计算机系统应用. 2025(01): 26-36 .
    2. 杨焜,王宏伟,张夫净,李进,张之好,李正龙. 多尺度复杂环境下的锚孔定位方法. 矿业研究与开发. 2025(01): 126-134 .
    3. 李梅,张鹏鹏,李元琛. AI赋能智能矿山:应用场景及未来展望. 煤炭经济研究. 2025(02): 161-169 .
    4. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 . 本站查看
    5. 卢才武,宋义良,江松,章赛,王懋,纪凡. 基于改进U-net的少样本煤岩界面图像分割方法. 金属矿山. 2024(01): 149-157 .
    6. 李季,马潇锋,吴洁琪,强旭博,武荔阳,闫博,董继辉,陈朝森. 融合钻孔地质信息的煤岩图像识别方法. 工矿自动化. 2024(08): 38-43+68 .
    7. 田培忠. 基于ResNet网络层数的露天矿道路识别效果研究. 露天采矿技术. 2024(05): 59-64 .
    8. 张传伟,何正伟,路正雄,李林岳,龚凌霄,张刚强,潘巧娜. 基于MRU-Net++的极薄煤层综采面煤岩界面图像识别. 煤炭科学技术. 2024(11): 103-116 . 本站查看
    9. 武强,张帅,杜沅泽,徐华,赵颖旺. 基于MRAU视频分割模型的矿井涌(突)水风险识别方法. 煤炭科学技术. 2024(11): 17-28 . 本站查看
    10. 吴安坤,郭军成,王强,冷宇. 基于改进DeepLabv3+网络的气象卫星影像雷暴识别. 气象科技. 2024(06): 775-786 .
    11. 周素静,康楠,余敏. 基于变形分数阶Lorenz混沌系统的煤岩界面图像分割方法. 金属矿山. 2024(12): 246-251 .
    12. 解北京,李恒,董航,栾铮,张奔,李晓旭. 基于多尺度特征融合井下猴车载人状态的智能识别算法与应用. 煤炭科学技术. 2024(12): 272-286 . 本站查看

    Other cited types(10)

Catalog

    Article views (215) PDF downloads (48) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return