Advance Search
LI Ang,ZHOU Yonggen,YANG Yuxuan,et al. Study on failure mechanism and application of double-layer structure floor with large buried depth and high confined water[J]. Coal Science and Technology,2023,51(10):207−219. DOI: 10.13199/j.cnki.cst.2022-1485
Citation: LI Ang,ZHOU Yonggen,YANG Yuxuan,et al. Study on failure mechanism and application of double-layer structure floor with large buried depth and high confined water[J]. Coal Science and Technology,2023,51(10):207−219. DOI: 10.13199/j.cnki.cst.2022-1485

Study on failure mechanism and application of double-layer structure floor with large buried depth and high confined water

Funds: 

National Natural Science Foundation of China (51874229); Key Funding Project of Shaanxi Provincial Natural Science Basic Research Program (2020JZ-52)

More Information
  • Received Date: August 14, 2022
  • Available Online: September 27, 2023
  • The first mining of nearly whole rock lower protective layer working face in Pingdingshan coal mining area is used to liberate the Ji group coal resources of its upper threatened by the gas outburst. The mining of the rock layer at a depth of nearly 1000 meters is bound to increase the depth of the floor damage. Once the L5 weak water-rich aquifer in the aquifuge is disturbed, the indirect recharge channel of the cold ash water is formed, which affects the safety and stability of the rock floor. Firstly, the theoretical model of plastic slip line of double-layer structure floor is established, and the analytical solution of maximum failure depth of double-layer floor under three working conditions is derived. Then through the self-designed similar simulation experimental platform of pore water pressure (spring) and stratum effective stress (jack), the deformation form and failure characteristics of stope roof and floor are simulated and analyzed based on digital image correlation technology. Finally, the borehole strain measurement method was used to carry out on-site monitoring of floor fracture development morphology in Ji15-31040 nearly whole rock working face of Pingdingshan No.12 Coal Mine. The results show that the maximum failure depth of Ji15-31040 nearly whole rock working face floor is 16.59 m by using the plastic slip line theory of double-layer structure floor. The similar simulation experiment reveals that the floor failure is concentrated at both ends of the open-off cut and the working face, with obvious lagging failure characteristics. The maximum failure depth is 17.8 m. After the working face advances 159.9 m into full mining, the floor stress gradually recovers. The field measurement results show that the floor rock mass has a compression-shear slip failure at 7.9 m in front of the working face. The floor before and after the working face is pushed through the borehole shows compression-shear and tension-shear failure, respectively. The maximum failure depth of the floor is between 16.5 m and 18 m. The results of field measurement are in good agreement with theoretical calculation and similar simulation test.

  • [1]
    RANJITH P G,ZHAO J,JU M H,et al. Opportunities and challenges in deep mining: a brief review[J]. Engineering,2017,3(4):546−551. doi: 10.1016/J.ENG.2017.04.024
    [2]
    谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术,2017,49(2):1−16.

    XIE Heping. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences,2017,49(2):1−16.
    [3]
    吴 涛,方向清,宁树正,等. 华北型煤田“三下一上”煤炭资源现状及开发利用研究[J]. 煤炭科学技术,2021,49(9):129−135. doi: 10.13199/j.cnki.cst.2021.09.019

    WU Tao,FANG Xiangqing,NING Shuzheng,et al. Study on status quo and development as well as utilization of coal resources“under buildings, water bodies, railways and above confined water”in North China Coalfields[J]. Coal Science and Technology,2021,49(9):129−135. doi: 10.13199/j.cnki.cst.2021.09.019
    [4]
    BAI L Y,LIANG Y B,SONG Y B,et al. Study on failure law and failure depth of floor in deep mining[J]. Geotechnical and Geological Engineering,2019,37(6):4933−4946. doi: 10.1007/s10706-019-00953-7
    [5]
    李春元,崔春阳,雷国荣,等. 深部开采岩体围压卸荷-渗流致拉破裂机制[J]. 煤炭学报,2022,47(8):3069−3082. doi: 10.13225/j.cnki.jccs.2022.0394

    LI Chunyuan,CUI Chunyang,LEI Guorong,et al. Tensile fracture mechanism of rock mass induced by the unloading-seeping of confining pressure in deep coal mining[J]. Journal of China Coal Society,2022,47(8):3069−3082. doi: 10.13225/j.cnki.jccs.2022.0394
    [6]
    LI A, YANG Y X, ZHU M C, et al. Design theory and physical simulation test using a textile bag to control water inrush in a coal mine roadway[J]. Mine Water and the Environment, 2022: 1-12.
    [7]
    黄炳香,张 农,靖洪文,等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报,2020,45(3):911−926.

    HUANG Bingxiang,ZHANG Nong,JING Hongwen,et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J]. Journal of China Coal Society,2020,45(3):911−926.
    [8]
    FANG F,SHU C,WANG H T. Physical simulation of upper protective coal layer mining with different coal seam inclinations[J]. Energy Science & Engineering,2020,8(9):3103−3116.
    [9]
    王中华,曹建军. 深部远距离煤层群卸压主控因素及首采层优选方法研究[J]. 煤炭科学技术,2021,49(8):154−161. doi: 10.13199/j.cnki.cst.2021.08.020

    WANG Zhonghua,CAO. Jianjun. Study on main control factors of pressure relief of deep and long-distance coal seams group and optimization method of initial mining[J]. Coal Science and Technology,2021,49(8):154−161. doi: 10.13199/j.cnki.cst.2021.08.020
    [10]
    杨 科,刘 帅,唐春安,等. 多关键层跨煤组远程被保护层煤壁片帮机理及防治[J]. 煤炭学报,2019,44(9):2611−2621. doi: 10.13225/j.cnki.jccs.2019.0416

    YANG Ke,LIU Shuai,TANG Chunan,et al. Mechanism and prevention of coal seam rib spalling in remote protected layer across coal group[J]. Journal of China Coal Society,2019,44(9):2611−2621. doi: 10.13225/j.cnki.jccs.2019.0416
    [11]
    杨 科,刘 帅. 深部远距离下保护层开采多关键层运移-裂隙演化-瓦斯涌出动态规律研究[J]. 采矿与安全工程学报,2020,37(5):991−1000.

    YANG Ke,LIU Shuai. Rule of multi-key strata movement-fracture evolution-dynamics of gas emission in deep long distance lower protective layer mining[J]. Journal of Mining& Safety Engineering,2020,37(5):991−1000.
    [12]
    JIN K,CHENG Y P,WANG W,et al. Evaluation of the remote lower protective seam mining for coal mine gas control: a typical case study from the Zhuxianzhuang coal mine, Huaibei coalfield, China[J]. Journal of Natural Gas Science and Engineering,2016,33:44−55. doi: 10.1016/j.jngse.2016.05.004
    [13]
    MA D,DUAN H Y,ZHANG J X,et al. A state-of-the-art review on rock seepage mechanism of water inrush disaster in coal mines[J]. International Journal of Coal Science & Technology,2022,9(1):1−28.
    [14]
    LI A,DING X S,YU Z Z,et al. Prediction model of fracture depth and water inrush risk zoning in deep mining coal seam floor[J]. Environmental Earth Sciences,2022,81(11):1−21.
    [15]
    王朋朋,赵毅鑫,姜耀东,等. 邢东矿深部带压开采底板突水特征及控制技术[J]. 煤炭学报,2020,45(7):2444−2454. doi: 10.13225/j.cnki.jccs.DZ20.0680

    WANG Pengpeng,ZHAO Yixin,JIANG Yaodong,et al. Characteristics and control technology of water inrush from deep coal seam floor above confined aquifer in Xingdong coal mine[J]. Journal of China Coal Society,2020,45(7):2444−2454. doi: 10.13225/j.cnki.jccs.DZ20.0680
    [16]
    LI A,MA Q,LIAN Y Q,et al. Numerical simulation and experimental study on floor failure mechanism of typical working face in thick coal seam in Chenghe Mining Area of Weibei, China[J]. Environmental Earth Sciences,2020,79(5):1−22.
    [17]
    李 昂,李睿妮,王 盼,等. 澄合矿区5#煤综采面不同倾长下底板破坏深度规律研究[J]. 煤炭技术,2017,36(4):9−12.

    LI Ang,LI Ruini,WANG Pan,et al. Study on regularity of failure depth of floor No. 5 coal seam in fully mechanized coal mining face in different length in Chenghe Mining Area[J]. Coal Technology,2017,36(4):9−12.
    [18]
    李见波,尹尚先. 近奥灰薄隔水层底板岩体变形破坏机制研究[J]. 煤炭科学技术,2021,49(12):173−179. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112021

    LI Jianbo,YIN Shangxian. Study on deformation and rock failure mechanism of floor rock mass with thin aquifuge near Ordovician limestone[J]. Coal Science and Technology,2021,49(12):173−179. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112021
    [19]
    李 昂,牟 谦,刘朝阳,等. 渭北煤田多因素影响下底板扰动破坏深度研究[J]. 煤炭工程,2020,52(5):138−143.

    LI Ang,MU Qian,LIU Chaoyang,et al. Fitting analysis and verification of floor disturbance failure depth under the influence of multiple factors in Weibei coalfield[J]. Coal Engineering,2020,52(5):138−143.
    [20]
    LI A,MU Q,MA L,et al. Numerical analysis of the water-blocking performance of a floor with a composite structure under fluid-solid coupling[J]. Mine Water and the Environment,2021,40(3):479−496.
    [21]
    李 昂,谷拴成,陈方方. 带压开采煤层底板破坏深度理论分析及数值模拟:以陕西澄合矿区董家河煤矿5号煤层为例[J]. 煤田地质与勘探,2013,41(4):56−60. doi: 10.3969/j.issn.1001-1986.2013.04.014

    LI Ang,GU Shuancheng,CHEN Fangfang. Theoretical analysis and numerical simulation of destroyed depth of coal seam floor during bearing mining: with seam No. 5 in Dongjiahe mine, Chenghe mining area, Shaanxi as example[J]. Coal Geology & Exploration,2013,41(4):56−60. doi: 10.3969/j.issn.1001-1986.2013.04.014
    [22]
    刘伟韬,穆殿瑞,杨 利,等. 倾斜煤层底板破坏深度计算方法及主控因素敏感性分析[J]. 煤炭学报,2017,42(4):849−859.

    LIU Weitao,MU Dianrui,YANG Li,et al. Calculation method and main factor sensitivity analysis of inclined coal floor damage depth[J]. Journal of China Coal Society,2017,42(4):849−859.
    [23]
    虎维岳,朱开鹏,黄选明. 非均布高压水对采煤工作面底板隔水岩层破坏特征及其突水条件研究[J]. 煤炭学报,2010,35(7):1109−1114. doi: 10.13225/j.cnki.jccs.2010.07.017

    HU Weiyue,ZHU Kaipeng,HUANG Xuanming. Study on floor rock mass failure and water inrush caused by non-uniform distributed water pressure in mining face[J]. Journal of China Coal Society,2010,35(7):1109−1114. doi: 10.13225/j.cnki.jccs.2010.07.017
    [24]
    ZHAO J H,CHEN J T,ZHANG X G,et al. Distribution characteristics of floor pore water pressure based on similarity simulation experiments[J]. Bulletin of Engineering Geology and the Environment,2020,79(9):4805−4816. doi: 10.1007/s10064-020-01835-6
    [25]
    李杨杨,张士川,孙煕震,等. 煤层采动底板突水演变过程可视化试验平台研制与试验研究[J]. 煤炭学报,2020,45(3):911−926. doi: 10.13225/j.cnki.jccs.2020.1435

    LI Yangyang,ZHANG Shichuan,SUN Xizhen,et al. Development and experimental study on yisua lization test platform for water inrush evolution process of coal seam mining floor[J]. Journal of China Coal Society,2020,45(3):911−926. doi: 10.13225/j.cnki.jccs.2020.1435
    [26]
    LIU S L,LIU W T,SHEN J J. Stress evolution law and failure characteristics of mining floor rock mass above confined water[J]. KSCE Journal of Civil Engineering,2017,21(7):2665−2672. doi: 10.1007/s12205-017-1578-6
    [27]
    冯梅梅,茅献彪,白海波,等. 承压水上开采煤层底板隔水层裂隙演化规律的试验研究[J]. 岩石力学与工程学报,2009,28(2):336−341.

    FENG Meimei,MAO Xianbiao,BAI Haibo,et al. Experimental research on fracture evolution law of water-resisting strata in coal seam floor above aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):336−341.
    [28]
    赵毅鑫,姜耀东,吕玉凯,等. 承压工作面底板破断规律双向加载相似模拟试验[J]. 煤炭学报,2013,38(3):384−390.

    ZHAO Yixin,JIANG Yaodong,LYU Yukai,et al. Similar simulation ex-periment of bi-directional loading for floor destruction rules in coal mining above aquifer[J]. Journal of China Coal Society,2013,38(3):384−390.
    [29]
    李春元. 深部强扰动底板裂隙岩体破裂机制及模型研究[D]. 北京: 中国矿业大学(北京), 2018: 1-120.

    LI Chunyuan. Fracture mechanism and its model of floor rock mass under strong disturbance in deep coal mining[D]. Beijing: China University of Mining & Technology, Beijing, 2018: 1-120.
    [30]
    张金才,刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报,1990,15(2):46−55. doi: 10.3321/j.issn:0253-9993.1990.02.002

    ZHANG Jincai,LIU Tianquan. On depth of fissured zone in seam floor resulted from coal extraction and its distribution characteristics[J]. Journal of China Coal Society,1990,15(2):46−55. doi: 10.3321/j.issn:0253-9993.1990.02.002
    [31]
    LI A,JI B N,MA Q,et al. Physical simulation study on grouting water plugging of flexible isolation layer in coal seam mining[J]. Scientific Reports,2022,12(1):1−16. doi: 10.1038/s41598-021-99269-x
    [32]
    彭守建,张倩文,许 江,等. 基于三维数字图像相关技术的砂岩渗流-应力耦合变形局部化特性试验研究[J]. 岩土力学,2022,43(5):1197−1206.

    PENG Shoujian,ZHANG Qianwen,XU Jiang,et al. Experimental study of deformation localization characteristics of sandstone under seepage-stress coupling based on 3D digital image correlation technology[J]. Rock and Soil Mechanics,2022,43(5):1197−1206.
    [33]
    曹志国,张建民,王 皓,等. 西部矿区煤水协调开采物理与情景模拟实验研究[J]. 煤炭学报,2021,46(2):638−651. doi: 10.13225/j.cnki.jccs.2020.1173

    CAO Zhiguo,ZHANG Jianmin,WANG Hao,et al. Physical modelling and scenario simulation of coal water co-mining in coal mining areas in western China[J]. Journal of China Coal Society,2021,46(2):638−651. doi: 10.13225/j.cnki.jccs.2020.1173
  • Related Articles

    [1]XIE Panshi, WU Shaogang, LUO Shenghu, WU Yongping, CHEN Jianjie. Dynamic instability mechanism of support and its control in longwall mining of steeply dipping coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(2): 58-71. DOI: 10.13199/j.cnki.cst.2022-1746
    [2]LIU Jimin, LIU Yuanfei, FU Xiaochang. Mechanism analysis of catastrophic instability of drilling shaft lining based on Python language[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 75-81.
    [3]ZHAO Hongbao, LIU Yihong, LIU Shaoqiang, ZHANG Jiahao, WU Tong. Instability mechanism of narrow coal pillar roadway floor considering dynamic load disturbance[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(2): 56-64.
    [4]YANG Shuhao, WANG Jun, NING Jianguo, SHEN Zhen, LI Zhuang. Mechanism of connected instability of “rib-roof” in deep large section chamber under dynamic disturbance[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(10): 23-33.
    [5]LI Wen, WANG Donghao, LI Hongjie, MA Zhiyong. Study on chain effect and type of coal mine goafs instability disaster[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7).
    [6]YU Jiacheng, WANG Gang, LIU Weidong, NING Yongjie, JIANG Hanhan. Life-cycle information integration and working condition discriminational gorithm of mine equipment[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4).
    [7]QU Xingyue, SHI Longqing. Discrimination on mine water inrush source based on Matlab factor analysis and Distance Distinguished Model[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (8).
    [8]Wang Yongzheng. Instability analysis and reinforcement technology of ingate in thin and weak mudstone roof and thick coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (8).
    [9]Zhang Zizhao Chen Kai Cheng Wenyu Liu Jun Tian Zhongfeng, . Study on classification of surrounding rock quality in mine shaft and roadway based on Fisher discrimination analysis[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (11).
    [10]wei sijiang Nan Hua Xu Yaohui, . Study on instability mechanism and control technology of mine roadway in continued breaking region[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (4).
  • Cited by

    Periodical cited type(11)

    1. 罗波远,张涛,安彦成,姚新宇,刘志刚,李树文. 厚煤层大巷保护煤柱合理尺寸优化. 煤炭技术. 2025(01): 48-51 .
    2. 郭东明,肖博丰,赵志峰,叶贵川,刘嘉华,唐耿福. 新型叠片式吸能锚杆与普通高强度锚杆抗冲击性能对比研究. 煤矿安全. 2025(02): 109-117 .
    3. 杨敬轩,张瑞,卢硕,孙兴平,陈建本. 工作面顶板超前预裂应力阻隔护巷机理. 中国矿业大学学报. 2024(02): 264-276 .
    4. 左常清,刘亚楠,田晓伟. 义桥煤矿边界煤柱留设合理性研究. 山东煤炭科技. 2024(05): 31-36 .
    5. 马斌文,谢和平,张修峰,周宏伟,陈洋,郑福润,孙文斌,朱建波. 动载扰动下巷道围岩冲击破坏与能量释放规律研究. 采矿与岩层控制工程学报. 2024(04): 5-22 .
    6. 李庆祥,张晓广,刘道园,赵旭晔. 不同岩性煤岩组合体力学特性模拟研究. 煤. 2024(11): 53-56 .
    7. 马小利. 双陷落柱孤岛工作面托顶煤巷关键区域防控研究. 煤炭与化工. 2024(11): 16-19+23 .
    8. 杨敬轩,朱乐章,周萌,卢硕. 顶板应力作用下的覆岩切顶孔间距确定及切顶线位置选择. 采矿与安全工程学报. 2024(06): 1170-1178 .
    9. 谷拴成,张炜,文嘉豪,康恽博,呼嘉龙. 防隔水煤柱合理留设宽度分析. 西安科技大学学报. 2024(06): 1060-1070 .
    10. 李怀展,唐超,郭广礼,陈福,李伟,周华安,黄建勇. 热力耦合作用下煤炭地下气化地表沉陷预测方法. 煤炭科学技术. 2023(10): 242-251 . 本站查看
    11. 韦四江,王生柱,李鑫鹏. 煤柱留设宽度对密闭墙稳定性的影响研究. 煤炭技术. 2023(12): 1-5 .

    Other cited types(3)

Catalog

    Article views (55) PDF downloads (32) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return