Advance Search
ZHANG Gansu,DONG Liang,ZHOU Enhui,et al. Multi-scale pressure analysis and fluidization quality characterization of dry dense medium fluidized bed[J]. Coal Science and Technology,2023,51(4):215−223. DOI: 10.13199/j.cnki.cst.2022-1571
Citation: ZHANG Gansu,DONG Liang,ZHOU Enhui,et al. Multi-scale pressure analysis and fluidization quality characterization of dry dense medium fluidized bed[J]. Coal Science and Technology,2023,51(4):215−223. DOI: 10.13199/j.cnki.cst.2022-1571

Multi-scale pressure analysis and fluidization quality characterization of dry dense medium fluidized bed

  • Coal beneficiation is the source technology of clean processing and utilization of coal. Dry coal beneficiation is an important way for efficient separation and upgrading of easily sliming coal in arid area. Dry dense medium fluidized bed forms a certain density of gas-solid fluidized bed by updraft-driven heavy medium particles fluidization, thus achieving coal separation according to bed density. The uniformity and stability of bed density, namely the bed fluidization quality, is the key to determine the separation accuracy. Due to the disturbance of airflow, bubbles, moving internals, feeding and other factors, the fluidization behavior of the bed is complex and changeable, and the pressure signal shows non-uniformity, non-linearity and multi-scale characteristics. Based on the characteristics of axial differential transmission and lateral equivalent diffusion of pressure signal in dry dense medium fluidized bed, the fluctuation characteristics of axial differential pressure were studied emphatically, and a quantitative characterization method of fluidization quality was proposed. The results show that: Based on time domain analysis, the probability density distribution of total pressure drop in Geldart A type separation fluidized bed is close to normal distribution. When the bed is in the particulate expansion, due to the uneven distribution of contact force between particles, the probability density shows the right deviation and the peak, deviating from the normal distribution. Through frequency domain analysis, it is found that the dominant frequency of bubbles dominates the whole axial interval of fluidized bed at the later stage of bed expansion. After complete fluidization, the dominant frequency of bubbles only controls the central region of the bed. The dominant frequency of bed concentration signal changes obviously along the bed axial distribution. Combined with the results of time-domain and frequency-domain signal analysis, a fluidization quality characterization model was proposed, where the standard deviation of axial fluctuation is weighted and averaged, and the dominant frequency of sub-bed concentration is taken as the weight value. This model can comprehensively evaluate the uniformity and stability of density distribution of dry dense medium fluidized bed, and provide strong support for the steady-state control and accurate separation of dry dense medium fluidized bed.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return