Advance Search
KANG Xiaobing,LI Xiaoxue,RAO Lifang,et al. Source identification and pattern study of closed coal mines water inflow in Songzao Mining Area, Chongqing City[J]. Coal Science and Technology,2023,51(10):220−230. DOI: 10.13199/j.cnki.cst.2022-1640
Citation: KANG Xiaobing,LI Xiaoxue,RAO Lifang,et al. Source identification and pattern study of closed coal mines water inflow in Songzao Mining Area, Chongqing City[J]. Coal Science and Technology,2023,51(10):220−230. DOI: 10.13199/j.cnki.cst.2022-1640

Source identification and pattern study of closed coal mines water inflow in Songzao Mining Area, Chongqing City

Funds: 

Key Preliminary Work Funding Project of Chongqing Municipal Bureau of Land, Resources and Housing Management in 2015 (2015-999-03); Yunnan Key Laboratory of Geotechnical Engineering and Geological Hazards (Cultivation) Open Fund Project (YNYDK-202209)

More Information
  • Received Date: October 07, 2022
  • Available Online: September 24, 2023
  • Accurate identification of the source of water gushing in closed coal mines and correct division of water gushing modes are of great significance for scientific disposal of water resources waste and water environment pollution caused by closed coal mine drainage. A comprehensive method for water inflow characterization, source identification, and model research for closed coal mines by multivariate analysis of “water quantity–hydrochemistry–microorganism–hydrogeological conditions” is proposed. The method is based on the dynamic monitoring data of water inflow and the water chemical and microbial indexes of several closed coal mines in the Songzao mining area of Chongqing in a hydrological year. Water quality analysis methods, such as flow dynamic analysis of water inflow and flow–rainfall hydro-logical series correlation function, descriptive statistics of water chemical indexes, and the Pearson correla-tion function of water chemical indexes between mine water samples are also used as bases. The method is further coupled with the hydrogeological conditions of the mining area. Results show that there are three types of fluctuations in the response of water inflow from closed coal mines to rainfall: sudden rise and slow drop, slow rise and slow drop, and stable. The difference in water inflow source and water diversion medium is the main reason for the dynamic change in mine water inflow and the temporal and spatial differences in its response to rainfall. It also causes the characteristics of large variability in TDS, pH, chemical correlation degree, and microbial content of mine water. Based on water source identification, four types, rainfall infiltration type, aquifer release type, old empty water overflow type, and compound type, of water gushing modes of closed coal mines in mining areas are proposed. The multivariate comprehensive analysis method identifies the source of water inrush from closed coal mines in karst mining areas effectively, deepens the understanding of the characteristics of water inrush from closed coal mines, and provides theoretical support for the scientific prevention and control of closed coal mine water inrush in Songzao mining area and the coordinated development of environment and resources.

  • [1]
    袁 亮,姜耀东,王 凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.

    YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed /abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
    [2]
    袁 亮. 推动我国关闭/废弃矿井资源精准开发利用研究[J]. 煤炭经济研究,2019,39(5):1.

    YUAN Lianng. Promote the precise development and utilization of closed/abandoned mine resources in China[J]. Coal Economic Research,2019,39(5):1.
    [3]
    吴金随,张辞源,尹尚先,等. 近20 a我国煤矿水害事故统计及分析[J]. 煤炭技术,2022,41(6):86−89. doi: 10.13301/j.cnki.ct.2022.06.022

    WU Jinsui,ZHANG Ciyuan,YIN Shangxian,et al. Statistics and analysis of coal mine water damage accidents in China in recent 20 years[J]. Coal Technology,2022,41(6):86−89. doi: 10.13301/j.cnki.ct.2022.06.022
    [4]
    姜 本,刘明智. 我国南方典型岩溶煤矿床涌水规律和防治水方向的探讨[J]. 煤炭学报,1982,7(2):70−76.

    JIANG Ben,LIU Mingzhi. Laws of water-inrush and guiding principles for water control in some typical karst coal deposits in south China[J]. Journal of China Coal Society,1982,7(2):70−76.
    [5]
    HUANG Pinghua,WANG Xinyi. Piper-PCA-fisher recognition model of water inrush source: A case study of the jiaozuo mining area[J]. Geofluids,2018:1−10.
    [6]
    陈陆望,许冬清,殷晓曦,等. 华北隐伏型煤矿区地下水化学及其控制因素分析—以宿县矿区主要突水含水层为例[J]. 煤炭学报,2017,42(4):996−1004.

    CHEN Luwang,XU Dongqing,YIN Xiaoxi,et al. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China: A case study of dominant inrush aquifers in Suxian mining area[J]. Journal of China Coal Society,2017,42(4):996−1004.
    [7]
    赵利军,曹 恒,朱马别克·达吾力. 复合隔水条件下煤层群涌水控制因素及对瓦斯赋存的影响[J]. 中国安全生产科学技术,2020,16(7):55−60.

    ZHAO Lijun,CAO Heng,DAURI Jumabek. Controlling factors of water inflow in coal seam group under composite water-resisting conditions and their influence on gas occurrence[J]. Journal of Safety Science and Technology,2020,16(7):55−60.
    [8]
    Menendez J,Loredo J,Galdo M,et al. Energy storage in underground coal mines in NW Spain: Assessment of an underground lower water reservoir and preliminary energy balance[J]. Renewable Energy,2019,134:1381−1391. doi: 10.1016/j.renene.2018.09.042
    [9]
    虎维岳,周建军,闫兰英. 废弃矿井水位回弹诱致环境与安全灾害分析[J]. 西安科技大学学报,2010,30(4):436−440.

    HU Weiyue,ZHOU Jianjun,YAN Lanying. Study on environment and safety disasters from abandoned coalmines[J]. Journal of Xi’an University of Science and Technology,2010,30(4):436−440.
    [10]
    李琰庆,赵华杰,夏抗生. 废弃煤矿诱发的透水机理及防治技术[J]. 煤矿安全,2020,51(6):87−92.

    LI Yanqing,ZHAO Huajie,XIA Kangsheng. Mechanism and control technology of water inrush caused by bandoned coal mines[J]. Safety in Coal Mines,2020,51(6):87−92.
    [11]
    史箫笛,康小兵,罗向奎,等. 闭坑煤矿井下空间资源开发利用评价[J]. 煤炭科学技术,2020,48(3):112−119.

    SHI Xiaodi,KANG Xiaobing,LUO Xiangkui,et al. Development and utilization evaluation of underground space resources in closed pit coal mine[J]. Coal Science and Technology,2020,48(3):112−119.
    [12]
    巫显钧,李宗福,孙大发. 松藻矿区M8煤层采面涌水特征与对策[J]. 中国煤炭地质,2015,27(4):35−38, 48.

    WU Xianjun,LI Zongfu,SUN Dafa. Coal Seam M8 Stoping Face Water Gushing Characteristics and Countermeasures in Songzao Mining Area[J]. Coal Geology of China,2015,27(4):35−38, 48.
    [13]
    周述和,唐 聪. 松藻煤矿综采工作面顶板大型突水原因初探[J]. 低碳世界,2013(16):124−125.

    ZHOU Shuhe,TANG Cong. Preliminary study on the causes of large-scale water inrush in roof of fully mechanized working face in Songzao Coal Mine[J]. Low Carbon World,2013(16):124−125.
    [14]
    李永祥. 茅口组石灰岩巷道防治水技术[J]. 建井技术,2015,36(1):18−20, 17. doi: 10.3969/j.issn.1002-6029.2015.01.005

    LI Yongxiang. Technology of Water Prevention and Control for Roadway of Maokou Formation Limestone[J]. Mine Construction Technology,2015,36(1):18−20, 17. doi: 10.3969/j.issn.1002-6029.2015.01.005
    [15]
    LUO Mingming,CHEN Zhihua,ZHOU Hong,et al. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes[J]. Hydrogeology Journal,2018,26(2):629−639. doi: 10.1007/s10040-017-1664-3
    [16]
    XANKE Julian,GOEPPE Nadine,SAWARIEH Ali,et al. Impact of managed aquifer recharge on the chemical and isotopic composition of a karst aquifer, Wala reservoir, Jordan[J]. Hydrogeology Journal,2015,23(5):1027−1040.
    [17]
    吴 超. 松藻矿区构造特征及煤体变形程度定量评价研究[D]. 徐州: 中国矿业大学, 2015.

    WU Chao. Study on structural features and quantitative evaluation of coal deformation degree on Songzao Mining Area[D]. Xuzhou: China University of Mining and Technology, 2015.
    [18]
    ZHAO Lei,Colin R. Ward, David French, et al. Mineralogical composition of Late Permian coal seams in the Songzao Coalfield, southwestern China[J]. International Journal of Ceology,2013,116:208−226.
    [19]
    吴国代,曾春林,程 军,等. 松藻矿区地下水动力场特征及其对煤层气富集的影响[J]. 煤田地质与勘探,2018,46(4):55−60.

    WU Guodai,ZENG Chunlin,CHENG Jun. et al. Characteristics of groundwater dynamic field and its effect on coalbed methane accumulation in Songzao mining area[J]. Coal Geology & Exploration,2018,46(4):55−60.
    [20]
    梁吉业,冯晨娇,宋 鹏. 大数据相关分析综述[J]. 计算机学报,2016,39(1):1−18.

    LIAN Jiye,FENG Chenjiao,SONG Peng. A survey on correlation analysis of big data[J]. Chinese Journal of Computers,2016,39(1):1−18.
    [21]
    韩宝平,郑世书,周笑绿,等. 南桐二井采区突水动态研究[J]. 煤田地质与勘探,1994,23(6):36−40.

    HAN Baoping,ZHENG Shishu,ZHOU Xiaolv,et al. Researches on regime of water inrush in allotment on. 2 of Nantong Coal Mine[J]. Coal Geology & Exploration,1994,23(6):36−40.
    [22]
    束龙仓,刘丽红,陶玉飞,等. 贵州后寨典型岩溶小流域水动力特征分析[J]. 河海大学学报(自然科学版),2008,36(4):433−437.

    SHU Llongcang,LIU Lihong,TAO Yufei,et al. Hydrodynamic characteristic analysis of Houzhai karst watershed in Guizhou Province[J]. Journal of Hohai University(Natural Sciences),2008,36(4):433−437.
    [23]
    王朋辉,姜光辉,袁道先,等. 岩溶地下水位对降雨响应的时空变异特征及成因探讨—以广西桂林甑皮岩为例[J]. 水科学进展,2019,30(1):56−64.

    WANG Penghui,JIANG Ganghui,YUAN Daoxian,et al. Characteristics and cause of spatial and temporal variability of karst groundwater level’s response to rainfall—a case study of Zengpiyan cave site in Guilin, Guangxi, China[J]. Advances in Water Science,2019,30(1):56−64.
    [24]
    CAI Zuansi,OFTERDINGER Ulrich. Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland[J]. Journal of Hydrology,2016,535:71−84. doi: 10.1016/j.jhydrol.2016.01.066
    [25]
    HOCKING Mark,KELLY Bryce F. J. Groundwater recharge and time lag measurement through vertosols using impulse response functions[J]. Journal of Hydrology,2016,535:22−35. doi: 10.1016/j.jhydrol.2016.01.042
    [26]
    曹慧丽,李 伟,苏春利,等. 水化学及硫同位素对大冶矿区地下水硫酸盐污染的指示[J]. 地球科学,2023,48(9):3432−3443.

    CAO Huili,LI Wei,SU Chunli,et al. Indication of hydrochemistry and δ34S-SO42−on sulfate pollution of groundwater in Daye Mining Area[J]. Earth Science,2023,48(9):3432−3443.
    [27]
    马燕华,苏春利,刘伟江,等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学,2016,37(12):4690−4699. doi: 10.13227/j.hjkx.201604182

    MA Yanhua,SU Chunli,LIU Weijiang,et al. Identification of Sulfate Sources in the Groundwater System of Zaozhuang: Evidences from Isotopic and Hydrochemical Characteristics[J]. Environmental Science,2016,37(12):4690−4699. doi: 10.13227/j.hjkx.201604182
    [28]
    SUN Jing,Kobayashi T,STROSNIDER Willian H J,et al. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in Karst Waters[J]. Journal of Hydrology,2017,551:245−252.
    [29]
    尹 恒,姜丽丽,裴尼松,等. 基于水化学和多元统计的煤矿采空积水识别[J]. 科学技术与工程,2020,20(27):11051−11058. doi: 10.3969/j.issn.1671-1815.2020.27.011

    YIN Heng,Jiang Lili,PEI Nisong,et al. Identification of coalmine goaf groundwater based on hydrogeochemistry and multivariate statistics[J]. cience Technology and Engineering,2020,20(27):11051−11058. doi: 10.3969/j.issn.1671-1815.2020.27.011
    [30]
    王 月,安 达,席北斗,等. 某基岩裂隙水型危险废物填埋场地下水污染特征分析[J]. 环境化学,2016,35(6):1196−1202. doi: 10.7524/j.issn.0254-6108.2016.06.2015111602

    WANG Yue,AN Da,XI Beidou,et al. Groundwater pollution characteristics of the hazardous waste landfill built upon bedrock fissure water[J]. Environmental Chemistry,2016,35(6):1196−1202. doi: 10.7524/j.issn.0254-6108.2016.06.2015111602
  • Related Articles

    [1]ZHANG Xin, LIU Zegong, ZHANG Jianyu, FU Shigui, QIAO Guodong, YANG Shuai, CHANG Shuai. Study on propagation law of cracking and permeability enhancement caused by blasting in deep high-gas coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(7): 89-100. DOI: 10.12438/cst.2023-1622
    [2]WANG Dengke, PANG Xiaofei, WEI Jianping, ZHANG Hongtu, YAO Banghua, WEI Le, GUO Yujie, YUAN Mingyu, TANG Jiahao. Effect of gas properties and pore pressure on the microcrack propagation in coal[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(2): 183-192. DOI: 10.13199/j.cnki.cst.2022–1417
    [3]QIN Nan ZHANG Zuoliang FENG Xuezhi LIU Yaqi CUI Lizhuang WANG Yongyan, . Study on uniaxial strength and crack propagation law of cracked similar rock after creep[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(12).
    [4]Wang Guoyan Yu Guangming Gao Liyan Li Gang, . Study on influence of initial crack dip angle on damage-fractured characteristics of rock[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (6).
    [5]Li Danqiong Zhang Suian Zhang Shicheng, . Expansion mechanism of through strata fractured cracks in coalbed methane horizontal well[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (5).
    [6]DING Wen-long MEI Yong-gui YIN Shuai LIU Zhong ZHAO Dong LIU Jian-jun, . Logging inversion on pore-crack features of coal measure strata in Qinshui Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (2).
    [7]LIU Da-meng LI Zhen-tao CAI Yi-dong, . Study progress on pore-crack heterogeneity and geological influence factors of coal reservoir[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (2).
    [8]Finite Element Analysis on Fatigue Crack Expansion of Lifter in Valve Seat of Emulsion Pump[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (5).
    [9]Computer Simulation on Crack Network Grouting of Coal and Rock Mass[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (10).
    [10]Analysis on Para-Static Stress Field Features of Pre-Cracking Blasting in Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).
  • Cited by

    Periodical cited type(12)

    1. 李晓涛. 煤矿液压支架顶梁的耐久性分析及结构优化. 自动化应用. 2025(01): 83-85 .
    2. 袁成健,田莹,贾安昊,范春永,周锋. 爆炸载荷作用下纯水支架稳定性仿真研究. 煤矿机械. 2025(03): 202-207 .
    3. 杜锦丰,张永辉,侯宇栋,白焱镖. 煤矿综采工作面液压支架研究综述. 内蒙古煤炭经济. 2025(01): 5-8 .
    4. 康健,张博成,杨逾. 基于贝叶斯-响应面法的煤矿开挖过程中不同含水状态岩体力学参数分析. 河南科学. 2024(03): 313-320 .
    5. 伍永平,杜玉乾,解盘石,王红伟,胡博胜,闫壮壮,王同,胡涛. 大倾角煤层伪俯斜工作面平行四边形液压支架结构设计与运动响应. 煤炭科学技术. 2024(04): 314-325 . 本站查看
    6. 郭涛. 基于模拟仿真的煤矿液压支架结构优化改进研究. 自动化应用. 2024(16): 193-195 .
    7. 柴蓉霞,姜潇远,王秦生,于正洋,龙雪,刘军. 基于能量分配原理的煤矿机械冲击行为研究及装置设计. 中国机械工程. 2024(09): 1584-1596 .
    8. 曾庆良,班新亮,孟昭胜,万丽荣,雷小万. 基于Unity3D的工作面液压支架群组空间支护姿态数字孪生重构方法. 煤炭科学技术. 2024(11): 74-88 . 本站查看
    9. 史艳兵. ZY9000/45/22D型液压支架顶梁结构优化研究. 机械管理开发. 2024(12): 160-162 .
    10. 卢璐凯,孟昭胜,雷小万,胡雨龙. 掘进临时支护支架设计及静载特性分析. 煤炭工程. 2024(12): 213-219 .
    11. 牛飞,牛进忠. 考虑疲劳寿命的液压支架掩护梁结构优化改进研究. 自动化应用. 2023(16): 190-192 .
    12. 刘世明. 大采高液压支架掩护梁的模拟仿真与结构改进. 自动化应用. 2023(20): 176-178 .

    Other cited types(2)

Catalog

    Article views (67) PDF downloads (23) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return