Citation: | ZHANG Chaolin,PU Jingxuan,SONG Shihao,et al. Research progress on the two-phase flow migration law of coal and gas outburst[J]. Coal Science and Technology,2023,51(8):129−139. DOI: 10.13199/j.cnki.cst.2022-1826 |
Coal and gas outburst is an extremely complex dynamic phenomenon in coal mines. It is mainly manifested as gas suffocation, pulverized coal impact and burial, which seriously threatens the safety production of coal mines. Revealing the migration law and its main controlling factors of two-phase flow in coal and gas outburst is of great significance for clarifying the disaster-causing mechanism of outburst and guiding disaster prevention and avoidance on site. In recent years, relevant scholars had carried out a large number of coal and gas outburst two-phase flow test and theoretical research, and had achieved fruitful research results. This paper summarized and analyzed the two-phase flow simulation test device and the research results obtained by domestic and foreign scholars in the two-phase flow field. Firstly, the existing two-phase flow physical simulation test devices for coal and gas outburst were systematically reviewed, and the key parameters and functional advantages of different test devices were compared and analyzed. On this basis, the migration velocity, migration pattern and accumulation distribution characteristics of outburst pulverized coal flow, as well as the formation reason, propagation velocity and attenuation law of outburst shock wave were summarized. Finally, the influence and control effect of roadway structure, gas pressure, coal particle size, ground stress and gas composition on outburst two-phase flow were analyzed. According to the analysis, the research on the two-phase flow of coal and gas outburst at the present stage shown the characteristics of visualization of outburst process, complexity of roadway structure, diversification of data collection, comprehensiveness of influencing factors and diversification of research methods, and basically grasped the occurrence mechanism, propagation and disaster-causing law of outburst two-phase flow. However, the establishment and improvement of similarity system (similarity criteria and materials), the coexistence and mutual interference principle of two-phase flow and ventilation system, the multi-factor coupling disaster-causing mechanism of two-phase flow, and the integration of disaster-causing and prevention and control of two-phase flow still need further in-depth study.
[1] |
王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报,2022,47(2):297−322. doi: 10.13225/j.cnki.jccs.yg21.1846
国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[R]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm?eqid=f3ae8d87000708e500000006645b2b44. 2023.02.28. doi: 10.13225/j.cnki.jccs.yg21.1846
|
[2] |
许鹏飞. 2000—2021年我国煤矿事故特征及发生规律研究[J]. 煤炭工程,2022,54(7):129−133.
XU Pengfei. Characteristics and occurrence regularity of coal mine accidents in China from 2020 to 2021[J]. Coal Engineering,2022,54(7):129−133.
|
[3] |
张超林, 王恩元, 王奕博, 等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探, 2021, 49(4): 134−141.
ZHANG Chaolin, WANG Enyuan, WANG Yibo, et al. Spatial-temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J]. Coal Geology & Exploration, 2021, 49(4): 134−141.
|
[4] |
张超林,彭守建,许 江,等. 煤与瓦斯突出过程中气压时空演化规律[J]. 岩土力学,2017,38(1):81−90.
ZHANG Chaolin,PENG Shoujian,XU Jiang,et al. Temporospatial evolution of gas pressure during coal and gas outburst[J]. Rock and Soil Mechanics,2017,38(1):81−90.
|
[5] |
张超林,王培仲,王恩元,等. 我国煤与瓦斯突出机理70年发展历程与展望[J]. 煤田地质与勘探,2023,51(2):59−94.
ZHANG Chaolin,WANG Peizhong,WANG Enyuan,et al. Coal and gas outburst mechanism: Research progress and prospect in China over the past 70 years[J]. Coal Geology & Exploration,2023,51(2):59−94.
|
[6] |
张超林, 许 江, 彭守建, 等. 煤与瓦斯突出及其防控物理模拟试验研究[M]. 徐州: 中国矿业大学出版社, 2020.
ZHANG Chaolin, XU Jiang, PENG Shoujian, et al. Study on physical simulation test of coal and gas outburst and its prevention and control[M]. Xuzhou: China University of Mining and Technology press, 2020.
|
[7] |
杨书召,张瑞林. 煤与瓦斯突出冲击波及瓦斯气流所致伤害研究[J]. 中国安全科学学报,2012,22(11):62−66.
YANG Shuzhao,ZHANG Ruilin. Research on injuries due to shock wave and gas flow from coal and gas outburst[J]. China Safety Science Journal,2012,22(11):62−66.
|
[8] |
程卫民,王 刚,张 睿,等. 煤与瓦斯突出形成冲击波的灾变损害[J]. 科技导报,2008,26(24):61−65.
CHENG Weiming,WANG Gang,ZHANG Rui,et al. Formation of coal and gas outburst blast wave[J]. Technology Review,2008,26(24):61−65.
|
[9] |
张超林, 王恩元, 王奕博, 等. 多功能煤与瓦斯突出模拟试验系统研制与应用[J]. 岩石力学与工程学报, 2022, 41(5): 995−1007.
ZHANG Chaolin, WANG Enyuan, WANG Yibo, et al. Development and application of multi-functional test system for coal and gas outburst simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 995−1007.
|
[10] |
刘 义,石必明,张 煜,等. 煤与瓦斯突出两相流传播特性实验研究[J]. 中国安全生产科学技术,2021,17(7):91−96.
LIU Yi,SHI Biming,ZHANG Yu,et al. Experimental study on propagation characteristics of two-phase flow in coal and gas outburst[J]. Journal of Safety Science and Technology,2021,17(7):91−96.
|
[11] |
王 凯,王 亮,杜 锋,等. 煤粉粒径对突出瓦斯-煤粉动力特征的影响[J]. 煤炭学报,2019,44(5):1369−1377.
WANG Kai,WANG Liang,DU Feng,et al. Influence of coal powder particle sizes on dynamic characteristics of coal and gas outburst[J]. Journal of China Coal Society,2019,44(5):1369−1377.
|
[12] |
许 江,魏仁忠,程 亮,等. 煤与瓦斯突出流体多物理参数动态响应试验研究[J]. 煤炭科学技术,2022,50(1):159−168. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201015
XU Jiang,WEI Renzhong,CHENG Liang,et al. Experimental study on dynamic response of coal and gas outburst fluid with multiple physical parameters[J]. Coal Science and Technology,2022,50(1):159−168. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201015
|
[13] |
杨雪林. 巷道煤与瓦斯突出抛出物动力学特征研究[D]. 重庆: 重庆大学, 2021.
YANG Xuelin. Study on dynamic characteristics of coal and gas outburst ejecta in roadway[D]. Chongqing: Chongqing University, 2021.
|
[14] |
刘 伟. 煤与瓦斯突出的煤粉池机理探讨[J]. 煤炭技术,2014,33(8):21−23.
Liu Wei. Discussion on coal powder pool mechanism for coal and gas outburst[J]. Coal Technology,2014,33(8):21−23.
|
[15] |
周 斌,许 江,彭守建,等. 突出过程中煤层及巷道多物理场参数动态响应[J]. 煤炭学报,2020,45(4):1385−1397.
ZHOU Bin,XU Jiang,PENG Shoujian,et al. Dynamic response of coal seam and roadway during coal and gas outburst[J]. Journal of China Coal Society,2020,45(4):1385−1397.
|
[16] |
许 江,程 亮,周 斌,等. 突出过程中煤–瓦斯两相流运移的物理模拟研究[J]. 岩石力学与工程力学报,2019,38(10):1945−1953.
XU Jiang,CHENG Liang,ZHOU Bin,et al. Physical simulation of coal-gas two-phase flow migration in coal and gas outburst[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):1945−1953.
|
[17] |
孙东玲,曹 偈,熊云威,等. 突出过程中煤—瓦斯两相流运移规律的实验研究[J]. 矿业安全与环保,2017,44(2):26−30.
SUN Dongling,CAO Jie,XIONG Yunwei,et al. Experimental study on migration rule of coal-gas flow in process of outburst[J]. Mining Safety & Environmental Protection,2017,44(2):26−30.
|
[18] |
曹 偈,孙海涛,戴林超,等. 煤与瓦斯突出动力效应的模拟研究[J]. 中国矿业大学学报,2018,47(1):113−120, 154. doi: 10.13247/j.cnki.jcumt.000818
CAO Jie,SUN Haitao,DAI Linchao,et al. Simulation research on dynamic effect of coal and gas outburst[J]. Journal of China University of Mining & Technology,2018,47(1):113−120, 154. doi: 10.13247/j.cnki.jcumt.000818
|
[19] |
金 侃. 煤与瓦斯突出过程中高压粉煤—瓦斯两相流形成机制及致灾特征研究[D]. 徐州: 中国矿业大学, 2017.
JIN Kan. Study on formation mechanism and disaster characteristics of high pressure pulverized coal-gas two-phase flow in coal and gas outburst[D]. Xuzhou: China University of Mining and Technology, 2017.
|
[20] |
王 锐,修 毓,王 刚,等. 基于颗粒流理论的煤与瓦斯突出数值模拟研究[J]. 山东科技大学学报(自然科学版),2016,35(4):52−61.
WANG Rui,XIU Yu,WANG Gang,et al. Numerical simulation of coal and gas outburst based on particle flow theory[J]. Journal of Shandong University of Science and Technology (Natural Science),2016,35(4):52−61.
|
[21] |
ZHANG Chaolin,WANG Enyuan,XU Jiang,et al. A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal[J]. Fuel,2021,287:119493. doi: 10.1016/j.fuel.2020.119493
|
[22] |
王 凯,周爱桃,魏高举,等. 直巷道中突出冲击气流的形成及传播特征研究[J]. 采矿与安全工程学报,2012,29(4):559−563.
WANG Kai,ZHOU Aitao,WEI Gaoju,et al. Study of formation and propagation characteristics of shock wave and gas flow of outburst at straight roadway[J]. Journal of Mining & Safety Engineering,2012,29(4):559−563.
|
[23] |
周爱桃,王 凯,吴则琪,等. 瓦斯风压诱导矿井风流灾变规律研究[J]. 中国矿业大学学报,2014,43(6):1011−1018. doi: 10.13247/j.cnki.jcumt.000234
ZHOU Aitao,WANG Kai,WU Zeqi,et al. Research on air-flow catastrophic law induced by gas pressure in mine[J]. Journal of China University of Mining & Technology,2014,43(6):1011−1018. doi: 10.13247/j.cnki.jcumt.000234
|
[24] |
苗法田,孙东玲,胡千庭. 煤与瓦斯突出冲击波的形成机理[J]. 煤炭学报,2013,38(3):367−372.
MIAO Fatian,SUN Dongling,HU Qianting. The formation mechanism of shock waves in the coal and gas outburst process[J]. Journal of China Coal Society,2013,38(3):367−372.
|
[25] |
程五一,陈国新. 煤与瓦斯突出冲击波的形成及模型建立[J]. 煤矿安全,2000,31(9):23−25.
CHENG Wuyi,CHEN Guoxin. Formation and modeling of coal and gas outburst shock wave[J]. Safety in Coal Mines,2000,31(9):23−25.
|
[26] |
刘 义,石必明,张 煜,等. 煤与瓦斯突出冲击气流传播特征研究[J]. 煤炭技术,2021,40(11):94−96.
LIU Yi,SHI Biming,ZHANG Yu,et al. Study on propagation characteristics of coal and gas outburst impact airflow[J]. Coal Technology,2021,40(11):94−96.
|
[27] |
Otuonye F,Sheng J. A numerical simulation of gas flow during coal/gas outbursts[J]. Geotechnical & Geological Engineering,1994,12(1):15−34.
|
[28] |
XUE Haiteng, LI Xijian, LIU Zhu, et al. Law of countercurrent energy dissipation of fresh air by coal and gas outburst shock waves[J]. Shock and Vibration, 2022: 856741.
|
[29] |
WANG Kai, ZHOU Aitao, ZHANG Jianfang, et al. Real-time numerical simulations and experimental research for the propagation characteristics of shock waves and gas flow during coal and gas outburst[J] Safety Science, 2012, 50(4): 835−841.
|
[30] |
许 江,程 亮,魏仁忠,等. T型巷道中突出煤−瓦斯两相流动力学试验研究[J]. 岩土力学,2022,43(6):1423−1433. doi: 10.16285/j.rsm.2021.1129
XU Jiang,CHENG Liang,WEI Renzhong,et al. Propagation characteristics of coal-gas two-phase flow in T-shaped roadway[J]. Rock and Soil Mechanics,2022,43(6):1423−1433. doi: 10.16285/j.rsm.2021.1129
|
[31] |
许 江, 程 亮, 彭守建, 等. 巷道结构对突出流体冲击特性的影响性试验研究[J]. 煤炭学报, 2023, 48(1): 238−250.
XU Jiang, CHENG Liang, PENG Shoujian, et al. Experimental study on the influence of roadway structure on outburst fluid impact characteristics[J]. Journal of China Coal Society, 2023, 48(1): 238−250.
|
[32] |
刘星魁,赵志梅. 直角拐角与障碍物对巷道瓦斯突出冲击波传播的影响[J]. 煤矿安全,2016,47(6):178−181.
LIU Xingkui,ZHAO Zhimei. Influence of right angle corners and obstructions on gas shock propagation in roadway[J]. Safety in Coal Mines,2016,47(6):178−181.
|
[33] |
张超林, 王奕博, 王恩元, 等. 煤与瓦斯突出煤粉在巷道内运移分布规律试验研究[J]. 煤田地质与勘探, 2022, 50(6): 11−19.
ZHANG Chaolin, WANG Yibo, WANG Enyuan, et al. Experimental study on the migration and distribution law of pulverized coal in roadway during coal and gas outburst[J]. Coal Geology & Exploration, 2022, 50(6): 11−19.
|
[34] |
ZHANG Chaolin, WANG Yibo, WANG Enyuan, et al. Influence of coal seam gas pressure on the propagation mechanism of outburst two-phase flow in visual roadway[J]. Fuel, 2022, 322: 124296.
|
[35] |
程 亮,许 江,周 斌,等. 不同瓦斯压力对煤与瓦斯突出两相流传播规律的影响研究[J]. 岩土力学,2020,41(8):2619−2626.
CHENG Liang,XU Jiang,ZHOU Bin,et al. The influence of different gas pressures on the propagation law of coal and gas outburst two-phase flow[J]. Rock and Soil Mechanics,2020,41(8):2619−2626.
|
[36] |
王 亮. 突出煤粉−瓦斯固气两相流动力学演化规律研究[D]. 北京: 中国矿业大学(北京), 2020.
WANG Liang. Dynamic evolution law of solid-gas two-phase flow in coal and gas outbursts[D]. Beijing: China University of Mining and Technology−Beijing, 2020.
|
[37] |
耿加波. 煤与瓦斯突出灾变时空演化及其煤—瓦斯两相流运移特性物理模拟试验研究[D]. 重庆: 重庆大学, 2018.
GENG Jiabo. Physical simulation on evolution of coal and gas out bursts and coal-gas two-phase flow transport characteristics[D]. Chongqing: Chongqing University, 2018.
|
[38] |
蒋安飞,孙东玲,刘延保,等. 瓦斯压力对煤与瓦斯突出冲击波传播的影响研究[J]. 矿业安全与环保,2021,48(2):18−22.
JIANG Anfei,SUN Dongling,LIU Yanbao,et al. Study on the influence of gas pressure on the propagation of coal and gas outburst shock wave[J]. Mining Safety & Environmental Protection,2021,48(2):18−22.
|
[39] |
孙东玲,胡千庭,苗法田. 煤与瓦斯突出过程中煤−瓦斯两相流的运动状态[J]. 煤炭学报,2012,37(3):452−458.
SUN Dongling,HU Qianting,MIAO Fatian. Motion state of coal-gas flow in the process of outburst[J]. Journal of China Coal Society,2012,37(3):452−458.
|
[40] |
唐巨鹏,于 宁,陈 帅. 瓦斯压力对煤与瓦斯射流突出能量的影响[J]. 安全与环境学报,2017,17(3):943−948.
TANG Jupeng,YU Ning,CHEN Shuai. Influence of gas pressure on coal and gas jet outburst energy[J]. Journal of Safety and Environment,2017,17(3):943−948.
|
[41] |
蒋安飞,孙东玲,刘延保,等. 煤粉粒径对突出冲击波传播特征的影响[J]. 矿业安全与环保,2021,48(5):13−16.
JIANG Anfei,SUN Dongling,LIU Yanbao,et al. Influence of coal fine particle size on propagation characteristics of outburst shock wave[J]. Mining Safety & Environmental Protection,2021,48(5):13−16.
|
[42] |
唐巨鹏,张 昕,潘一山,等. 深部巷道煤与瓦斯突出及冲击演化特征试验研究[J]. 岩石力学与工程学报,2022,41(6):1081−1092. doi: 10.13722/j.cnki.jrme.2021.0974
TANG Jupeng,ZHANG Xin,PAN Yishan,et al. Experimental study on outburst and impact evolution characteristics of coal and gas in deep roadways[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(6):1081−1092. doi: 10.13722/j.cnki.jrme.2021.0974
|
[43] |
唐巨鹏,杨森林,王亚林,等. 地应力和瓦斯压力作用下深部煤与瓦斯突出试验[J]. 岩土力学,2014,35(10):2769−2774.
TANG Jupeng,YANG Senlin,WANG Yalin,et al. Experiment of coal and gas outbursts under ground stress and gas pressure in deep mines[J]. Rock and Soil Mechanics,2014,35(10):2769−2774.
|
[44] |
唐巨鹏,任凌冉,潘一山,等. 高地应力条件煤与瓦斯突出模拟试验研究[J]. 煤炭科学技术,2022,50(2):113−121.
TANG Jupeng,REN Lingran,PAN Yishan,et al. Simulation test study on coal and gas outburst under conditions of high in-situ stress[J]. Coal Science and Technology,2022,50(2):113−121.
|
[45] |
张超林. 深部采动应力影响下煤与瓦斯突出物理模拟试验研究[D]. 重庆: 重庆大学, 2015.
ZHANG Chaolin. Experimental study on physical simulation of coal and gas outburst under the influence of deep mining stress[D]. Chongqing: Chongqing University, 2015.
|
[46] |
高布桐,韦善阳,曲日红,等. 煤与瓦斯突出气体逆流影响模式研究[J]. 中国安全生产科学技术,2022,18(4):98−105.
GAO Butong,WEI Shanyang,QU Rihong,et al. Study on influence mode of gas counter flow in coal and gas outburst[J]. Journal of Safety Science and Technology,2022,18(4):98−105.
|
[47] |
袁 亮,薛 阳,王汉鹏,等. 煤与瓦斯突出物理模拟试验研究新进展[J]. 隧道与地下工程灾害防治,2020,2(1):1−10.
YUAN Liang,XUE Yang,WANG Hanpeng,et al. New progress in physical simulation experiment of coal and gas outburst[J]. Hazard Control in Tunnelling and Underground Engineering,2020,2(1):1−10.
|
[48] |
李全贵, 邓羿泽, 胡千庭, 等. 煤岩水力压裂物理实验研究的综述及展望[J]. 煤炭科学技术, 2022, 50(12): 62−72.
LI Quangui, DENG Yize, HU Qianting, et al. Review and prospect of coal rock hydraulic fracturing physical experimental research[J]. Coal Science and Technology, 2022, 50(12): 62−72.
|
[49] |
韩 颖,吕 帅,张飞燕,等. 煤与瓦斯突出模拟试验研究进展及展望[J]. 河南理工大学学报(自然科学版),2022,41(1):1−8. doi: 10.16186/j.cnki.1673-9787.2020020028
HAN Ying,LYU Shuai,ZHANG Feiyan,et al. Research progress and prospect of coal and gas outburst simulation experiments[J]. Journal of Henan Polytechnic University(Natural Science),2022,41(1):1−8. doi: 10.16186/j.cnki.1673-9787.2020020028
|
[50] |
魏连江,李 胜,魏宗康,等. 煤与瓦斯突出对矿井通风系统的影响研究现状及展望[J]. 煤炭科学技术,2021,49(3):100−105. doi: 10.13199/j.cnki.cst.2021.03.012
WEI Lianjiang,LI Sheng,WEI Zongkang,et al. Research status and prospects of the influence of coal and gas outburst on ventilation system[J]. Coal Science and Technology,2021,49(3):100−105. doi: 10.13199/j.cnki.cst.2021.03.012
|
[51] |
李宗翔,王雅迪,高光超. 基于有源风网的瓦斯突出3D矿井灾变通风仿真[J]. 中国安全科学学报,2015,25(8):43−49. doi: 10.16265/j.cnki.issn1003-3033.2015.08.007
LI Zongxiang,WANG Yadi,GAO Guangchao,et al. Simulation of 3D mine ventilation system after gas outburst based on source-containing ventilation network[J]. China Safety Science Journal,2015,25(8):43−49. doi: 10.16265/j.cnki.issn1003-3033.2015.08.007
|
[52] |
彭守建, 许 江, 张超林, 等. 煤与瓦斯突出灾变过程中人−机−环受损模拟试验方法[P]. 中国, 107389859B, 2019-06-21.
PENG Shoujian, XU Jiang, ZHANG Chaolin, et al. Simulation test method of man-machine-environment damage in the process of coal and gas outburst disaster[P]. China, 107389859B, 2019-06-21.
|
[53] |
Mahdevari S, Shahriar K, Esfahanipour A. Human health and safety risks management in underground coal mines using fuzzy TOPSIS[J]. Science of the Total Environment, 2014, 488/489: 85−99.
|
1. |
唐巨鹏,张昕,潘一山. 煤与瓦斯突出物理模拟试验研究现状及展望. 岩石力学与工程学报. 2024(03): 521-541 .
![]() | |
2. |
窦林名,王永忠,卢方舟,贺虎,何江,张强. 急倾斜特厚煤层冲击地压防治探索与总结. 煤炭科学技术. 2024(01): 84-94 .
![]() | |
3. |
王俊虎. 基于腔喉网络模型的煤体水驱气演变规律数值模拟. 能源与环保. 2024(06): 52-56 .
![]() | |
4. |
孟腊梅. 塔山煤矿高位钻孔布置参数优化研究. 华北自然资源. 2024(04): 58-61 .
![]() | |
5. |
王想刚,张世范,许继宗,张吉福,陈国红,陈玉东,马占海. 高应力特厚突出煤层水力割缝卸压防突技术研究. 中国煤炭. 2024(10): 48-56 .
![]() | |
6. |
汪有清,吴明,万业婷. 新集二矿1煤组坚硬覆岩裂隙瓦斯异常涌出成因机制研究. 当代化工研究. 2024(22): 153-155 .
![]() | |
7. |
杨雪林,文光才,孙海涛,闫发志,杨慧明,曹偈,程晓阳,鲁俊,李虎虎. 基于激波管理论的突出冲击波超压预测模型及试验验证. 煤炭学报. 2024(12): 4822-4841 .
![]() | |
8. |
张超林,刘明亮,王恩元,王培仲,姜巧真,曾伟. 煤层渗透性对煤与瓦斯突出的影响规律及控制机理. 煤炭学报. 2024(12): 4842-4854 .
![]() | |
9. |
袁安营,杨晓璐,侯俊领,付光胜. 深部近距离煤层群瓦斯涌出异常煤层孔隙结构综合表征. 煤炭科学技术. 2024(12): 116-126 .
![]() |