Citation: | LIU Hongtao,LUO Zilong,HAN Zijun,et al. Study on evolution law of overburden fracture in fully-mechanized top-coal caving face with large mining height in thick coal seam[J]. Coal Science and Technology,2024,52(3):1−12. DOI: 10.13199/j.cnki.cst.2022-1926 |
Fully mechanized top-coal caving mining with large mining height is easy to form strong strata behavior, and the fracture evolution law of overlying strata is very important for safe production of working face. Taking the 160206 working face of Yangchangwan Coal Mine as the engineering background, the comprehensive research methods of similar simulation test, numerical simulation and theoretical analysis are used to systematically study the overburden fracture process and overburden migration law of the fully mechanized top coal caving working face with large mining height. The research shows that the strata in the water flowing fracture zone show “bench sinking” with the advance of the working face, and the subsidence trend of the same strata along the strike shows “sharp decline - stability (maximum) - rapid rise - stability (minimum)”. The overburden movement field of the working face has evolved from two areas (accelerated subsidence area and slow subsidence area) to three areas (accelerated subsidence area, slow subsidence area and stable area). The evolution of abscission layer and the law of surface subsidence are quantitatively described, and the dynamic subsidence mechanism of the surface and its related factors are deeply analyzed by using theoretical calculation expressions. Combined with the experimental results of similar simulation and numerical simulation, the morphological change characteristics of overburden fracture evolution are proposed: the overburden fracture morphology evolves from “single isosceles trapezoid” to “double isosceles trapezoid”, and the influence area of topsoil layer evolves from “rectangle” to “inverted trapezoid”. The dynamic evolution process of collapse area, separation area, compaction area and fracture enrichment area in overburden is analyzed: The caving zone gradually increases to a certain extent, the height decreases slightly and tends to be stable, the separation zone gradually develops from bottom to top and moves forward with the working face, the separation zone gradually closes to form a compaction zone, and the compaction zone gradually increases and finally remains stable, and the fracture enrichment zone is located at the front and back ends of goaf and moves forward with the working face.
[1] |
王再岚,智颖飙,张东海,等. 我国煤炭资源禀赋与国际储量格局分析[J]. 中国人口·资源与环境,2010,20(S1):318−320.
WANG Z L,ZHI Y B,ZHANG D H,et al. China’s coal resources endowments with the pattern of international reserves[J]. China Population,Resources and Environment,2010,20(S1):318−320.
|
[2] |
李 霞,崔 涛. 我国煤炭资源可持续发展的保障分析[J]. 中国煤炭,2019,45(1):33−37.
LI X,CUI T. Supportability analysis of sustainable development for coal resources in China[J]. China Coal,2019,45(1):33−37.
|
[3] |
王志强,武 超,罗健侨,等. 特厚煤层巨厚顶板分层综采工作面区段煤柱失稳机理及控制[J]. 煤炭学报,2021,46(12):3756−3770.
WANG Z Q,WU C,LUO J Q,et al. Instability mechanism and control of section coal pillar in fully mechanized mining face with super thick roof and extra thick seam[J]. Journal of China Coal Society,2021,46(12):3756−3770.
|
[4] |
于斌,匡铁军,杨敬轩,等. 特厚煤层开采坚硬顶板覆岩结构及其演化特征分析[J]. 煤炭科学技术,2023,51(1):95−104.
YU Bin,KUANG Tiejun,YANG Jingxuan,et al. Analysis of overburden structure and evolution characteristics of hard roof mining in extremely thick coal seam[J]. Coal Science and Technology,2023,51(1):95−104.
|
[5] |
王国法,庞义辉. 特厚煤层大采高综采综放适应性评价和技术原理[J]. 煤炭学报,2018,43(1):33−42.
WANG G F,PANG Y H. Full-mechanized coal mining and caving mining method evaluation and key technology for thick coal seam[J]. Journal of China Coal Society,2018,43(1):33−42.
|
[6] |
于 斌. 大同矿区特厚煤层综放开采强矿压显现机理及顶板控制研究[D]. 徐州:中国矿业大学,2014:60−82.
YU B. Study on strong pressure behavior mechanism and roof control of fully mechanized top coal caving in extra thickness seam in Datong Coal Mine [D]. Xuzhou:China University of Mining and Technology,2014:60−82.
|
[7] |
薛吉胜,赵铁林,潘黎明. “高位-低位”厚硬岩层综放面特厚煤层矿压显现特征研究[J]. 煤炭技术,2021,4(7):55−59.
XUE J S,ZHAO T L,PAN L M. Research on characteristics of underground pressure behavior of extra-thick coal seams in “high-low” thick and hard rock layers in fully mechanized caving working face[J]. Coal Technology,2021,4(7):55−59.
|
[8] |
刘垚鑫,高明仕,贺永亮,等. 倾斜特厚煤层综放沿空掘巷围岩稳定性研究[J]. 中国矿业大学学报,2021,50(6):1051−1059.
LIU Y X,GAO M S,HE Y L,et al. Study of control technology about gob-side entry driving with top-coal caving in inclined extra-thick coal seam[J]. Journal of China University of Mining and Technology,2021,50(6):1051−1059.
|
[9] |
孔令海. 特厚煤层大空间综放采场覆岩运动及其来压规律研究[J]. 采矿与安全工程学报,2020,37(5):943−950.
KONG L H. Overlying strata movement law and its strata pressure mechanism in fully mechanized top-coal caving workface with large space[J]. Journal of Mining and Safety Engineering,2020,37(5):943−950.
|
[10] |
窦桂东,林建成,杜 鑫,等. 特厚煤层综采工作面矿压显现规律研究[J]. 煤炭工程,2019,51(8):84−88.
DOU G D,LIN J C,DU X,et al. Study on mining pressure behavior of fully mechanized top-coal caving face in extra-thick coal seam[J]. Coal Engineering,2019,51(8):84−88.
|
[11] |
王云广,郭文兵,白二虎,等. 高强度开采覆岩运移特征与机理研究[J]. 煤炭学报,2018,43(S1):28−35.
WANG Y G,GUO W B,BAI E H,et al. Characteristics and mechanism of overlying strata movement due to high-intensity mining[J]. Journal of China Coal Society,2018,43(S1):28−35.
|
[12] |
蒋金泉,王 普,武泉林,等. 上覆高位岩浆岩下离层空间的演化规律及其预测[J]. 岩土工程学报,2015,37(10):1769−1779.
JIANG J Q,WANG P,WU Q L,et al. Evolution laws and prediction of separated stratum space under overlying high-position magmatic rocks[J]. Chinese Journal of Geotechnical Engineering,2015,37(10):1769−1779.
|
[13] |
许满贵,魏 攀,李树刚,等. “三软”煤层综采工作面覆岩运移和裂隙演化规律实验研究[J]. 煤炭学报,2017,42(S1):122−127.
XU M G,WEI P,LI S G,et al. Experimental study on overburden migration and fracture evolution law of “three soft” coal seam fully mechanized working-face[J]. Journal of China Coal Society,2017,42(S1):122−127.
|
[14] |
殷 伟,张 强,韩晓乐,等. 混合综采工作面覆岩运移规律及空间结构特征分析[J]. 煤炭学报,2017,42(2):388−396.
YIN W,ZHANG Q,HAN X L,et al. Overlying strata movement law and spatial structure analysis of fully mechanized mixed mining of backfilling and caving[J]. Journal of China Coal Society,2017,42(2):388−396.
|
[15] |
赵毅鑫,令春伟,刘 斌,等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报,2021,38(1):9−18,30.
ZHAO Y X,LING C W,LIU B,et al. Fracture evolution and energy dissipation of overlying strata in shallow-buried underground mining with ultra-high working face[J]. Journal of Mining and Safety Engineering,2021,38(1):9−18,30.
|
[16] |
张广超,陶广哲,孟祥军,等. 巨厚松散层下软弱覆岩破坏规律[J]. 煤炭学报,2022,47(11):3998−4010. doi: 10.13225/j.cnki.jccs.2021.1994
ZHANG G C,TAO G Z,MENG X J,et al. Failure law of weak overburden stratum underlying extra-thick alluvium[J]. Journal of China Coal Society,2022,47(11):3998−4010. doi: 10.13225/j.cnki.jccs.2021.1994
|
[17] |
杨 科,刘文杰,焦 彪,等. 深部厚硬顶板综放开采覆岩运移三维物理模拟试验研究[J]. 岩土工程学报,2021,43(1):85−93.
YANG K,LIU W J,JIAO B,et al. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering,2021,43(1):85−93.
|
[18] |
钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,21(3):2−7.
QIAN M G,MIAO X X,XU J L. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society,1996,21(3):2−7.
|
[19] |
许家林,钱鸣高. 覆岩关键层位置的判别方法[J]. 中国矿业大学学报,2000,29(5):21−25.
XU J L,QIAN M G. Method to distinguish key strata in overburden[J]. Journal of China University of Mining and Technology,2000,29(5):21−25.
|
[20] |
缪协兴,陈荣华,浦 海,等. 采场覆岩厚关键层破断与冒落规律分析[J]. 岩石力学与工程学报,2005,24(8):1289−1295.
MIAO X X,CHEN R H,PU H,et al. Analysis of breakage and collapse of thick key strata around coal face[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(8):1289−1295.
|
[21] |
许家林,鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报,2011,30(8):1547−1556.
XU J L,JU J F. Structural morphology of key stratum and its influence on strata behaviors in fully-mechanized face with super-large mining height[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1547−1556.
|
[22] |
闫少宏,尹希文,许红杰,等. 大采高综采顶板短悬臂梁-铰接岩梁结构与支架工作阻力的确定[J]. 煤炭学报,2011,36(11):1816−1820.
YAN S H,YIN X W,XU H J,et al. Roof structure of short cantilever-articulated rock beam and calculation of support resistance in full-mechanized face with large mining height[J]. Journal of China Coal Society,2011,36(11):1816−1820.
|
[23] |
付玉平,宋选民,邢平伟,等. 浅埋厚煤层大采高工作面顶板岩层断裂演化规律的模拟研究[J]. 煤炭学报,2012,37(3):366−371.
FU Y P,SONG X M,XING P W,et al. Study on simulation of caving and evolution law of roof strata of large mining height workface in shallow thick coal seam[J]. Journal of China Coal Society,2012,37(3):366−371.
|
[24] |
柴 敬,汪志力,刘文岗,等. 采场上覆关键层运移的模拟实验检测[J]. 煤炭学报,2015,40(1):35−41.
CHAI J,WANG Z L,LIU W G,et al. Monitoring movement laws of overlying key strata for coal mining in similar model[J]. Journal of China Coal Society,2015,40(1):35−41.
|
[25] |
任艳芳. 浅埋深工作面覆岩“悬臂梁-铰接岩梁”结构的提出与验证[J]. 煤炭学报,2019,44(S1):1−8.
REN Y F. Presentation and verification of “cantilever beam-articulated rock beam” composite structure in shallow buried working face[J]. Journal of China Coal Society,2019,44(S1):1−8.
|
1. |
窦林名,曹晋荣,曹安业,蔡武,巩思园,鞠明和,周坤友,阚吉亮. 煤矿覆岩矿震关键层及其破断释能机制. 煤炭学报. 2025(01): 180-192 .
![]() | |
2. |
杨伟利,韩恩魁,娄智帅. 不对称综采面上覆巨厚砾岩破断及矿压规律研究. 中原工学院学报. 2025(01): 64-72 .
![]() | |
3. |
李俊平,管婷婷,冯嘉禹,王海泉. 矿震与冲击地压防治研究进展. 中国安全科学学报. 2024(01): 85-93 .
![]() | |
4. |
秦续峰,任杰,罗浩,代连朋,冯丁杰. 新街矿区深部开采大能量矿震规律与发生机理研究. 防灾减灾学报. 2024(01): 61-67 .
![]() | |
5. |
杨胜利,岳豪,唐岳松,陈勇升,惠鼎恒. 基于中厚板理论的顶板断裂失稳规律研究. 岩石力学与工程学报. 2024(09): 2092-2107 .
![]() | |
6. |
窦林名,曹安业,杨耀,贺虎,杨垚鑫,白贤栖,顾倩悦,李松徽,付相超,顾颖诗,吴震,张帝. 巨厚覆岩矿震孕育破裂特征与应力触发机制. 煤田地质与勘探. 2024(10): 1-13 .
![]() | |
7. |
孟祥军,张广超,李友,陈连军,王超,赵仁宝,陶广哲,王冬,周广磊,陈淼,栾恒杰. 深厚表土覆岩结构运移演化及高应力突变致灾机理. 煤炭学报. 2023(05): 1919-1931 .
![]() | |
8. |
曹安业,窦林名,白贤栖,刘耀琪,杨科,李家卓,王常彬. 我国煤矿矿震发生机理及治理现状与难题. 煤炭学报. 2023(05): 1894-1918 .
![]() | |
9. |
李杨杨,朱慧聪,张士川,黄书翔,李铭松,张浩争,王一同. 采动诱发的含原生裂隙覆岩运移及涌(淋)水时空特征分析. 煤炭科学技术. 2023(07): 129-139 .
![]() | |
10. |
赵斌,王寅,赵善坤,吕坤,苏振国,李准. 特厚煤层综放工作面矿震诱发机理及防控技术:以龙王沟煤矿为例. 科学技术与工程. 2023(29): 12451-12457 .
![]() | |
11. |
白贤栖,曹安业,刘耀琪,王常彬,杨旭,赵迎春,杨耀. 基于震源机制解析的巨厚覆岩矿震破裂机制. 煤炭学报. 2023(11): 4024-4035 .
![]() | |
12. |
王书文,智宝岩,杜涛涛,杨光宇,陆闯,夏永学. 厚硬顶板潜在矿震风险地面压裂预控技术. 煤炭科学技术. 2023(11): 1-11 .
![]() | |
13. |
张广超,曲治,孟祥军,马俊鹏,王超,王磊,李志勇,王冬,周广磊. 远场高位厚硬岩层破断运动机理及响应规律研究. 煤炭科学技术. 2023(11): 12-22 .
![]() | |
14. |
杨耀,曹安业,白贤栖,刘耀琪,闫振乾,王常彬,王崧玮,赵迎春,顾颖诗. 深井巨厚覆岩邻空采动强矿震孕育发生机理. 煤炭科学技术. 2023(12): 220-231 .
![]() |