Citation: | ZHOU Fubao,XIN Haihui,WEI Lianjiang,et al. Research progress of mine intelligent ventilation theory and technology[J]. Coal Science and Technology,2023,51(1):313−328. DOI: 10.13199/j.cnki.cst.2022-2212 |
The safety assurance of intelligent mine building in China is intelligent mine ventilation. The idea of intelligent sensing and interactive control of underground ventilation human-machine-loop integrated information flow is pointed out based on the “combination of level and battle” in order to genuinely accomplish intelligent mine ventilation. Additionally, it covers the theory and design of mine intelligent ventilation, as well as accurate monitoring and early warning systems, real-time network problem-solving, fault diagnostics, and intelligent decision-making. Furthermore, it supports the platform structure of the mine intelligent ventilation system, the creation of new sensors for accurate ventilation parameter monitoring and arrangement strategy optimization, the processing of ventilation parameter information flow, the method for solving the wind network, the integration of the mine climate and ventilation network, the solution to the wind network’s response, and the concept of mine intelligent ventilation. To avoid the inaccuracy of point wind velocity measurement brought on by an uneven distribution of wind velocity in shaft section, a novel technique of direct measurement of wind volume in complete section is presented; To increase the precision of real-time wind network solution and the stability of routine operation of intelligent ventilation, a real-time wind resistance adaptive adjustment wind network solving model with heat and humidity coupling has been created. Building a catastrophe evolution model for coal and gas protrusion, fire, and other disasters requires the use of a field-area-network coupling numerical solution approach based on full-size disaster test data. Additionally, based on full-scale disaster test data, it developed a coupled field-area-network numerical solution method, constructed a disaster evolution model for coal and gas protrusion, fire, and gas explosion, and overcame the obstacle to disaster autonomous decision making and control of mine intelligent ventilation system; In conjunction with implementation cases for mine intelligent ventilation, it elaborated the field implementation and operation process of mine intelligent ventilation in regards to precise wind measurement, linkage control of ventilation facilities and equipment, intelligent fire and dust prevention, and pointed out the issues and future direction of mine intelligent ventilation construction.
[1] |
国家能源局. 《关于加快煤矿智能化发展的指导意见》的政策解读[EB /OL]( 2020–03–06). http://www.nea.gov.cn/2020–03/06/c_138849458.htm
|
[2] |
周福宝,魏连江,夏同强,等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报,2020,45(6):2225−2235.
ZHOU Fubao,WEI Lianjiang,XIA Tongqiang et al. Principle, key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society,2020,45(6):2225−2235.
|
[3] |
刘 剑. 矿井智能通风关键科学技术问题综述[J]. 煤矿安全,2020,51(10):108−111,117.
LIU Jian. Overview on key scientific and technical issues of mine intelligent ventilation[J]. Safety in Coal Mines,2020,51(10):108−111,117.
|
[4] |
卢新明,尹 红. 矿井通风智能化理论与技术[J]. 煤炭学报,2020,45(6):2236−2247.
LU Xinming,YIN Hong. The intelligent theory and technology of mine ventilation[J]. Journal of China Coal Society,2020,45(6):2236−2247.
|
[5] |
马洪义,李永植,安志雄. 矿井通风[J]. 煤矿安全,1974(5):46−50.
MA Hongyi,LI Yongzhi,AN Zhixiong. Mine ventilation[J]. Safety in Coal Mines,1974(5):46−50.
|
[6] |
梁 涛,侯友夫,吴楠楠. 掘进工作面局部通风智能监控系统的研究[J]. 矿山机械,2008,36(1):19−22.
LIANG Tao,HOU Youfu,WU Nannan. Study on the intelligent monitoring system of local ventilation for developing face[J]. Mining & Processing Equipment,2008,36(1):19−22.
|
[7] |
黄元平. 矿井通风[M]. 徐州: 中国矿业大学出版社, 1986.
|
[8] |
谢贤平,韩孟微. 矿井通风信息化和智能化研究[J]. 云南冶金,2012,41(5):1−7.
XIE Xianping,HAN Mengwei. Research on informationization and intellectualization of mine ventilation[J]. Yunnan Metallurgy,2012,41(5):1−7.
|
[9] |
陈开岩,贺俊杰. 矿井风温预测的一种加速迭代计算新方法[J]. 采矿与安全工程学报,2006,23(2):233−235.
CHEN Kaiyan,HE Junjie. An novel method of faster iterative computations for forecasting temperature of airflow in coal mine[J]. Journal of Mining & Safety Engineering,2006,23(2):233−235.
|
[10] |
张国建. 掘进工作面智能通风控制系统的设计与应用[J]. 煤炭科学技术,2008,36(5):76−79.
ZHANG Guojian. Design and application of intelligent ventilation control system to mine roadway heading face[J]. Coal Science and Technology,2008,36(5):76−79.
|
[11] |
谢贤平,冯长根,赵梓成. 矿井通风设计的智能化研究[J]. 矿业研究与开发,2000,20(1):11−15.
XIE Xianping,FENG Changgen,ZHAO Zicheng. Research on Intellectualization of the design of mine ventilation system[J]. Mining Research and Development,2000,20(1):11−15.
|
[12] |
YIN X,XIE X,LI Z,et al. Design of mine ventilation systems based on artificial intelligence[J]. Applied Mechanics and Materials,2014(614):107−112.
|
[13] |
张庆华,姚亚虎,赵吉玉. 我国矿井通风技术现状及智能化发展展望[J]. 煤炭科学技术,2020,48(2):97−103.
ZHANG Qinghua,YAO Yahu,ZHAO Jiyu. Status of mine ventilation technology in China and prospects for intelligent development[J]. Coal Science and Technology,2020,48(2):97−103.
|
[14] |
魏连江,周福宝,夏同强,等. 矿井智能通风与灾变应急决策平台[J]. 中国安全科学学报,2022,32(9):158−167.
WEI Lianjiang, ZHOU Fubao, XIA Tongqiang. et alMine intelligent ventilation and disaster emergency decision platform[J]. China Safety Science Journal,2022,32(9):158−167.
|
[15] |
黄 旭. 矿井智能通风系统架构及实时网络解算研究[D]. 阜新: 辽宁工程技术大学, 2021.
HUANG Xu. Research on the architecture of mine intelligent ventilation system and real-time network solution [D]. Fuxin: Liaoning Technical University, 2021.
|
[16] |
蔡 峰,袁 媛,刘泽功,等. 超声波在煤矿井下环境中的传播与衰减特性[J]. 中国矿业大学学报,2021,50(4):685−690.
CAI Feng, YUAN Yuan, LIU Zegong. et alPropagation and attenuation characteristics of ultrasonic in underground environment of coal mine[J]. Journal of China University of Mining & Technology,2021,50(4):685−690.
|
[17] |
李秉芮,刘 娜,井上雅弘. 高精度矿用超声波风速测量仪设计[J]. 工矿自动化,2022,48(2):119−124.
LI Bingrui,LIU Na,INOUE M. Design of high precision mine ultrasonic anemometer[J]. Industry and Mine Automation,2022,48(2):119−124.
|
[18] |
邵良杉,于保才,陈晓永. 矿井智能通风关键技术[J]. 煤矿安全,2020,51(11):121−124.
SHAO Liangbin,YU Baocai,CHEN Xiaoyong. Key technology of mine intelligent ventilation[J]. Safety in Coal Mines,2020,51(11):121−124.
|
[19] |
李作泉,张应芳,马瑞峰,等. 矿井通风智能化管控系统设计[J]. 煤矿安全,2022,53(9):226−232.
LI Zuoquan,ZHANG Yingfang,MA Ruifeng,et al. Design of mine ventilation intelligent control system[J]. Safety in Coal Mines,2022,53(9):226−232.
|
[20] |
倪景峰,乐晓瑞,常立峰,等. 基于决策树的矿井通风阻变型故障诊断及传感器优化布置[J]. 中国安全生产科学技术,2021,17(2):34−39.
NI Jingfeng,LE Xiaorui,CHANG Lifeng,et al. Resistance variant fault diagnosis and optimized layout of sensors for mine ventilation based on decision tree[J]. Journal of Safety Science and Technology,2021,17(2):34−39.
|
[21] |
宋 涛,王建文,吴奉亮,等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化,2022,48(4):114−120,141.
SONG Tao,WANG Jianwen,WU Fengliang,et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114−120,141.
|
[22] |
范远洋. 基于开源WebGIS的矿井通风监控与分析系统研究[D]. 徐州: 中国矿业大学, 2021.
FAN Yuanyang. Research on mine ventilation monitoring and analysis system based on open source webgis [D]. Xuzhou: China University of Mining and Technology, 2021.
|
[23] |
蒋成龙. 基于三维监控模型的通风参数监测优化与通风系统故障溯源研究[D]. 淮南: 安徽理工大学, 2022.
JIANG Chenglong. Research on monitoring optimization of ventilation parameters and fault tracing of ventilation system based on monitoring system [D]. Huainan: Anhui University of Science and Technology, 2022.
|
[24] |
李 敏,赵硕嫱. 基于实施监测数据的矿井通风仿真技术研究[J]. 煤炭技术,2021,40(5):145−148.
LI Min,ZHAO Shuoqiang. Research on mine ventilation simulation technology based on monitoring data[J]. Coal Technology,2021,40(5):145−148.
|
[25] |
张 婧. 多源数据融合的矿井通风瓦斯灾害预警平台[J]. 煤炭技术,2022,41(10):237−239.
ZHANG Jing. Mine ventilation gas disaster early warning platform based on multi source data fusion[J]. Coal Technology,2022,41(10):237−239.
|
[26] |
王振平,闫振国,岳 宁,等. 矿井“一通三防”智能管控系统研究[J]. 煤矿安全,2022,53(9):193−197.
WANG Zhenping,YAN Zhenguo,YUE Ning,et al. Research on intelligent control system of “one ventilation and three prevention” in coal mines[J]. Safety in Coal Mines,2022,53(9):193−197.
|
[27] |
齐俊铭,王 凯,王志静,等. 转龙湾煤矿矿井智能化通防系统与信息平台构建[J]. 煤矿安全,2022,53(9):212−220.
QI Junming,WANG Kai,WANG Zhijing,et al. Construction of mine intelligent ventilation and prevention system and information platform for Zhuanlongwan Coal Mine[J]. Safety in Coal Mines,2022,53(9):212−220.
|
[28] |
CROSS H J U O I B. Analysis of flow in networks of conduits or conductors [J], 1936, 286(1): 42–47.
|
[29] |
SCOTT D R, HINSLEY F B J C E. Ventilation Network Theory [J], 1951.
|
[30] |
张国枢. 通风安全学 [M]. 徐州: 中国矿业大学出版社, 2021.
|
[31] |
BANDYOPADHYAY L K,SINHA S K. Development of an expert system for on-line ventilation network analysis and graphic representation of mine ventilation parameters[J]. Journal of the South African Institute of Mining and Metallurgy,2002,102(3):125−130.
|
[32] |
DZIURZYNSKI W, KRACH A, PALKA T. Airflow sensitivity assessment based on underground mine ventilation systems modeling [J]. Energies, 2017, 10(10): 1451.
|
[33] |
LOWNDES I S,FOGARTY T,YANG Z Y. The application of genetic algorithms to optimise the performance of a mine ventilation network: the influence of coding method and population size[J]. Soft Computing,2005,9(7):493−506. doi: 10.1007/s00500-004-0364-9
|
[34] |
NYAABA W,FRIMPONG S,EL–NAGDY K A. Optimisation of mine ventilation networks using the Lagrangian algorithm for equality constraints[J]. International Journal of Mining Reclamation and Environment,2015,29(3):201−212. doi: 10.1080/17480930.2014.942449
|
[35] |
程 磊,党海波,彭信山. 矿井通风网络分析研究现状及趋势[J]. 煤炭工程,2011(3):90−92. doi: 10.3969/j.issn.1671-0959.2011.03.033
CHENG Lei,DANG Haibo,PENG Xinshan. Study status and tendency of ventilation network analysis[J]. Coal Engineering,2011(3):90−92. doi: 10.3969/j.issn.1671-0959.2011.03.033
|
[36] |
王德明,周福宝. 基于WINDOWS的矿井通风网络解算软件的研制[J]. 中国矿业大学学报,2000(1):41−44. doi: 10.3321/j.issn:1000-1964.2000.01.010
WANG Deming,ZHOU Fubao. Development of a WINDOWS-based mine ventilation network solution software[J]. Journal of China University of Mining & Technology,2000(1):41−44. doi: 10.3321/j.issn:1000-1964.2000.01.010
|
[37] |
钟德云,王李管,毕 林,等. 基于回路风量法的复杂矿井通风网络解算算法[J]. 煤炭学报,2015,40(2):365−370.
ZHONG Deyun,WANG Liguan,BI Lin,et al. Algorithm of complex ventilation network solution based on circuit air-quantity method[J]. Journal of China Coal Society,2015,40(2):365−370.
|
[38] |
WANG S, SUN J, WANG J, et al. Research on fuzzy solution of Cross method for analysis of mine ventilation networks; proceedings of the 3rd International Symposium on Modern Mining and SAFETY Technology, Liaoning TECH Univ, Fuxin, PEOPLES R CHINA, F [C], 2008.
|
[39] |
王树刚,王继仁,洪 林. 矿井正常和灾变时期通风网络解算的数学模型[J]. 辽宁工程技术大学学报,2003(4):436−438.
WANG Shugang,WANG Jiren,HONG Lin. Mathematical model for solving ventilation networks during conventional ventilation and emergency conditions[J]. Journal of Liaoning Technical University,2003(4):436−438.
|
[40] |
魏连江,周福宝,朱华新. 通风网络拓扑理论及通路算法研究[J]. 煤炭学报,2008,33(8):926−930.
WEI Lianjiang,ZHOU Fubao,ZHU Huaxin. Topology theory of ventilation network and path algorithm[J]. Journal of China Coal Society,2008,33(8):926−930.
|
[41] |
谢贤平,冯长根,赵梓成. 矿井通风网络模糊优化数学模型及其数值解法[J]. 中国安全科学学报,1999,9(6):27−32.
XIE Xianping,FENG Changgen,ZHAO Zicheng. Fuzzy optimization mathematical model of mine ventilation network and its numerical solution[J]. Journal of Safety Science and Technology,1999,9(6):27−32.
|
[42] |
CARNE J B J E, INFECTION. The natural ventilation of unheated 'closed rooms' [J]. 1946, 44(5): 314–325.
|
[43] |
KOCH H J Z F A U A. Calculation and evaluation of natural ventilation of workrooms[J]. 1967, 17(9): 270–182.
|
[44] |
KIM T J, PARK J S J B, ENVIRONMENT. Natural ventilation with traditional Korean opening in contemporary house [J], 2010, 45(1): 51–57.
|
[45] |
ZHOU A, WANG K J J O M S. Role of Gas ventilation pressure on the stability of airway airflow in underground ventilation [J]. 2018, 54(1): 111–119.
|
[46] |
WENGUI L, XIANPING X, HOUZAO X, et al. Reliability Calculation of Mine Ventilation Network [J]. 2014, 84: 752–757.
|
[47] |
胡明松,徐文忠. 自然风压对矿井通风网络稳定性影响的研究[J]. 煤炭工程,2008(11):72−74.
HU M S,XU W Z. Study on influence of mine natural ventilation pressure to stability of mine network[J]. Coal Engineering,2008(11):72−74.
|
[48] |
黄启铭,杜文州,颜国强,等. 深井自然风压变化规律及重点影响区域研究[J]. 煤矿安全,2014,45(9):16−19.
|
[49] |
高建良,徐 文,张学博. 围岩散热风流温度、湿度计算时水分蒸发的处理[J]. 煤炭学报,2010,35(6):951−955.
GAO JL,XU W,ZHANG XB. Treatment of water evaporation during calculation of temperature and humidity of airflow caused by heat release from the surrounding rock[J]. Journal of China Coal Society,2010,35(6):951−955.
|
[50] |
高建良,张学博. 围岩散热计算及壁面水分蒸发的处理[J]. 中国安全科学学报,2006(9):23−28. doi: 10.3969/j.issn.1003-3033.2006.09.004
GAO JL,ZHANG XB. Treatment of water evaporation on airway surface in Calculation of strata rock heat[J]. Journal of Safety Science and Technology,2006(9):23−28. doi: 10.3969/j.issn.1003-3033.2006.09.004
|
[51] |
高建良,张学博. 潮湿巷道风流温度与湿度变化规律分析[J]. 中国安全科学学报,2007(4):136−139. doi: 10.3969/j.issn.1003-3033.2007.04.026
GAO JL,ZHANG XB. Analysis on the changing rule of airflow’s temperature and humidity in wet airflow[J]. Journal of Safety Science and Technology,2007(4):136−139. doi: 10.3969/j.issn.1003-3033.2007.04.026
|
[52] |
杜翠凤,边梦龙. 矿井湿空气热湿参数的计算方法研究[J]. 矿业安全与环保,2017,44(6):96−100.
DU Cuifeng,BIAN Menglong. Research on the calculation method of hot-moist parameters of mines moist air[J]. Mining Safety & Environmental Protection,2017,44(6):96−100.
|
[53] |
李宗翔,王天明,张明乾,等. 矿井巷道淋湿蒸发换热系数构建及风流温度计算[J]. 煤炭学报,2017,42(12):3176−3181.
LI Zongxiang,WANG Tianming,ZHANG Mingqian,et al. Construction of air flow heat transfer coefficient and calculation of airflow temperature in mine roadway[J]. Journal of China Coal Society,2017,42(12):3176−3181.
|
[54] |
马 恒,尹 彬,刘 剑. 矿井风流温度预测分析研究[J]. 中国安全科学学报,2010,20(11):91−95.
MA Heng,YIN Bin,LIU Jian. Research on the prediction of airflow temperature in mine[J]. Journal of Safety Science and Technology,2010,20(11):91−95.
|
[55] |
牛国庆. 矿井通风阻力的热力学计算[J]. 焦作工学院学报(自然科学版),2001(2):84−86.
NIU Guoqing. Thermodynamic calculation of mine ventilation resistance[J]. Journal of Jiaozuo Institute of Technology(Natural Science),2001(2):84−86.
|
[56] |
杨德源, 杨天鸿. 矿井热环境及其控制 [M]. 北京: 冶金工业出版社, 2009.
|
[57] |
陈开岩,周福宝,夏同强,等. 基于空气状态参数与风量耦合迭代的风网解算方法[J]. 中国矿业大学学报,2021,50(4):613−623.
CHEN Kaiyan,ZHOU Fubao,XIA Tongqiang,et al. Venilation network solution based on coupling iteration air state parameters and air quantity[J]. Journal of China University of Mining & Technology,2021,50(4):613−623.
|
[58] |
王长钰. 非线性管道网络中的线性逼近法的收敛性及推广[J]. 应用数学学报,1978(4):269−282.
WANG Changyu. Convergence and generalization of the linear approximation method in nonlinear pipeline networks[J]. Acta Mathematicae Applicatae Sinica,1978(4):269−282.
|
[59] |
张建中. 一类求解管道网络方程的迭代法及其推广[J]. 应用数学学报,1981(2):175−189.
ZHANG Jianzhong. An iterative method for nonlinear pipe network equations and its generalization[J]. Acta Mathematicae Applicatae Sinica,1981(2):175−189.
|
[60] |
卢新明. 非线性管道网络中的数学规划问题及解法[J]. 应用数学学报,1989(3):281−291.
Lu X M. Mathematical programming problems in nonlinear pipeline networks and their solutions[J]. Acta Mathematicae Applicatae Sinica,1989(3):281−291.
|
[61] |
魏引尚,邵炜航,王 慧. 基于网络解算的采空区漏风分布计算模式[J]. 煤矿安全,2011,42(1):46−49. doi: 10.13347/j.cnki.mkaq.2011.01.035
|
[62] |
WU F L,LUO Y. An Innovative Finite tube method for coupling of mine ventilation network and gob flow field: methodology and application in risk analysis[J]. Mining Metallurgy & Exploration,2020,37(5):1517−1530.
|
[63] |
宫良伟. 基于AutoCAD Map 3D的通风仿真系统的研究 [D]. 徐州: 中国矿业大学, 2012.
GONG Liangwei. Study on ventilation simulation system based on AutoCAD Map 3D [D]. Xuzhou: China University of Mining & Technology, 2012.
|
[64] |
姜诗明,裴绍宇,郄雷敏. 基于MATLAB的矿井通风网络解算程序编制[J]. 陕西煤炭,2010,29(6):28−29,4. doi: 10.3969/j.issn.1671-749X.2010.06.010
JIANG Shiming,PEI Shaoyu,QIE Remin. MATLAB-based programming of mine ventilation network solution[J]. Shaanxi Coal,2010,29(6):28−29,4. doi: 10.3969/j.issn.1671-749X.2010.06.010
|
[65] |
米晓坤. 矿井局部风量与总风量调节[J]. 煤炭技术,2009,28(5):107−108.
MI Xiaokun. Mine local air volume and total air volume adjustment[J]. Coal Technology,2009,28(5):107−108.
|
[66] |
姜诗明. 矿井通风网络灵敏度理论及应用[J]. 煤矿安全,2011,42(1):96−99. doi: 10.13347/j.cnki.mkaq.2011.01.042
JIANG S M. Theory and application of mine ventilation network sensitivity[J]. Safety in Coal Mine,2011,42(1):96−99. doi: 10.13347/j.cnki.mkaq.2011.01.042
|
[67] |
周 静,刘 剑,贾进章. 矿井通风系统灵敏度分析[J]. 辽宁工程技术大学学报,2005(S1):1−3.
ZHOU Jing,LIU Jian,JIA Jinzhang. Analysis sensitivity of mine ventilation system[J]. Journal of Liaoning Technical University,2005(S1):1−3.
|
[68] |
赵 丹. 基于网络分析的矿井通风系统故障源诊断技术研究[D]. 阜新: 辽宁工程技术大学, 2011.
ZHAO Dan. Study of fault source diagnosis technology for mine ventilation system based on network analysis [D]. Fuxin: Liaoning Technical University, 2011.
|
[69] |
刘 剑,郭 欣,邓立军,等. 基于风量特征的矿井通风系统阻变型单故障源诊断[J]. 煤炭学报,2018,43(1):143−149. doi: 10.13225/j.cnki.jccs.2017.1693
LIU J,GUO X,Deng LJ,et al. Resistance variant single fault source diagnosis of mine ventilation system based on air volume characteristics with resistance variation[J]. Journal of China Coal Society,2018,43(1):143−149. doi: 10.13225/j.cnki.jccs.2017.1693
|
[70] |
刘 剑, 尹昌胜, 黄 德, 等. 矿井通风阻变型故障复合特征无监督机器学习模型[J]. 煤炭学报, 2020, 45(9): 3157–3165.
LIU J, YIN C S, HUANG D, et al. Unsupervised machine learning model for resistance variant fault diagnosis of mine ventilation damping faults[J]. Journal of China Coal Society, 45(9): 3157–3165.
|
[71] |
倪景峰,李 振,乐晓瑞,等. 基于随机森林的阻变型通风网络故障诊断方法[J]. 中国安全生产科学技术,2022,18(4):34−39.
NI JF,LI Z,LE XR,et al. Resistance variant fault diagnosis method of ventilation network based on random forest[J]. Journal of Safety Science and Technology,2022,18(4):34−39.
|
[72] |
李雨成,李俊桥,邓存宝,等. 基于角联子网的风量反演风阻病态改良算法[J]. 煤炭学报,2019,44(4):1147−1153. doi: 10.13225/j.cnki.jccs.2018.0741
LI Yucheng,LI Junqiao,DENG Cunbao,et al. Improved algorithm of air quantity calculating resistance based on diagonal subnetwork[J]. Journal of China Coal Society,2019,44(4):1147−1153. doi: 10.13225/j.cnki.jccs.2018.0741
|
[73] |
刘 剑,蒋清华,刘 丽,等. 矿井通风系统阻变型故障诊断及风速传感器位置优化[J]. 煤炭学报,2021,46(6):1907−1914. doi: 10.13225/j.cnki.jccs.2019.1768
LIU Jian,JIANG Qinghua,LIU Li,et al. Resistance variant fault diagnosis of mine ventilation system and position optimization of wind speed sensor[J]. Journal of China Coal Society,2021,46(6):1907−1914. doi: 10.13225/j.cnki.jccs.2019.1768
|
[74] |
周启超,刘 剑,刘 丽,等. 基于SVM的通风系统故障诊断惩罚系数与核函数系数优化研究[J]. 中国安全生产科学技术,2019,15(4):45−51.
ZHOU Qichao,LIU Jian,LIU Li,et al. Research on optimization of penalty coefficients and kernel function coefficients for ventilation system fault diagnosis based on SVM[J]. Journal of Safety Science and Technology,2019,15(4):45−51.
|
[75] |
赵 丹,陈 帅,潘竞涛. 基于FTA的矿井监控预警诊断知识表示及推理机制[J]. 中国安全生产科学技术,2015,11(6):38−43.
ZHAO Dan,CHEN Shuai,PAN Jingtao. Knowledge representation and reasoning mechanism of mine monitoring warning diagnosisc based on FTA[J]. Journal of Safety Science and Technology,2015,11(6):38−43.
|
[76] |
吴新忠,韩正化,魏连江,等. 矿井风流智能按需调控算法与关键技术[J]. 中国矿业大学学报,2021,50(4):725−734. doi: 10.13247/j.cnki.jcumt.001316
WU XZ,HAN ZH,WEI LJ,et al. Intelligent on-demand regulation algorithm and key technology of mine air flow[J]. Journal of China University of Mining & Technology,2021,50(4):725−734. doi: 10.13247/j.cnki.jcumt.001316
|
[77] |
吴新忠,张芝超,王 凯,等. 基于DE–GWO算法的矿井风网风量调节方法[J]. 中南大学学报(自然科学版),2021,52(11):3981−3989.
WU XZ,ZHANG ZC,WANG K,et al. Method for adjusting air volume of mine ventilation network based on DE–GWO algorithm[J]. Journal of Central South University(Science and Technology),2021,52(11):3981−3989.
|
[78] |
郝海清,王 凯,张春玉,等. 矿井皮带巷火灾风烟流场–区-网演化与调控规律[J]. 中国矿业大学学报,2021,50(4):716−724.
HAO Haiqing,WANG Kai,ZHANG Chunyu,et al. Evolution and regulation law of wind and smoke flow field area network in mine belt roadway fire[J]. Journal of China University of Mining & Technology,2021,50(4):716−724.
|
[79] |
张智韬, 李雨成, 李俊桥, 等. 智能通风精准调控系统架构及实现[J/OL]. 煤炭学报, 2022: 1–11. https://doi.org/10.13225/j.cnki.jccs.2022.0503.
ZHANG Zitao, LI Yucheng, LI Junqiao, et al. Architecture and implementation of intelligent ventilation precise control system[J/OL]. Journal of China Coal Society, 2022: 1–11. https://doi.org/10.13225/j.cnki.jccs.2022.0503.
|
1. |
张鹏云. 矿井通风机智能化管控技术研究. 能源与节能. 2025(01): 184-186+190 .
![]() | |
2. |
彭宝山,孙剑锋,宗广存,张立勇,高振华. 基于智能化GIS平台的矿井通防预警系统设计. 煤炭技术. 2025(03): 244-247 .
![]() | |
3. |
孙吉平. 基于SF_6质量浓度变化特征的煤矿火灾状态识别分析. 山西煤炭. 2025(01): 42-49 .
![]() | |
4. |
曹鹏,刘剑. 利用拉丁超立方与相关性采样的通风系统仿真不确定研究. 安全与环境学报. 2025(03): 1016-1025 .
![]() | |
5. |
王国法,任怀伟,富佳兴. 煤矿智能化建设高质量发展难题与路径. 煤炭科学技术. 2025(01): 1-18 .
![]() | |
6. |
田茈文,郭玉森. 基于回路风量法的矿井通风网络解算算法. 矿业安全与环保. 2024(01): 102-108+113 .
![]() | |
7. |
王志坚. 余吾煤业智能通风系统构建方法及其关键技术研究. 山东煤炭科技. 2024(02): 68-72 .
![]() | |
8. |
张浪,刘彦青. 矿井智能通风与关键技术研究. 煤炭科学技术. 2024(01): 178-195 .
![]() | |
9. |
王家臣,刘云熹,李杨,王蕾. 矿业系统工程60年发展与展望. 煤炭学报. 2024(01): 261-279 .
![]() | |
10. |
胡纪年,李雨成,李俊桥,张巍. 基于CNN的矿井外因火灾火源定位方法研究. 中国安全生产科学技术. 2024(03): 134-140 .
![]() | |
11. |
安赛,赵忠辉,张浪,李伟,彭然. 矿用对射式风速风向传感器设计. 工矿自动化. 2024(04): 50-54 .
![]() | |
12. |
吴奉亮,寇露. 用于矿井通风网络解算的通风机风压性能曲线自动识别方法. 工矿自动化. 2024(04): 103-111 .
![]() | |
13. |
钟德云,文历学,王李管. 基于混合整数规划的风流两步骤调控优化方法. 黄金科学技术. 2024(02): 356-365 .
![]() | |
14. |
张新春,孙权. 矿井智能通风系统关键技术研究. 内蒙古煤炭经济. 2024(07): 34-36 .
![]() | |
15. |
倪景峰,刘雪峰,邓立军. 矿井通风参数缺失数据插补方法. 煤炭学报. 2024(05): 2315-2323 .
![]() | |
16. |
沈志远,杨镇隆,焦莉,赵丹. 矿井通风系统智能故障诊断MC-OCSVM模型. 安全与环境学报. 2024(08): 3126-3132 .
![]() | |
17. |
初宗辉,侯凯,赵树国,聂玉龙,崔海威. 煤矿通风技术研究现状及发展方向. 科技与创新. 2024(16): 126-128 .
![]() | |
18. |
蒋秀双,刘剑. 巷道平均风速单点测试方法误差研究. 中国安全生产科学技术. 2024(08): 68-74 .
![]() | |
19. |
陈炫中,王孝东,杨懿杰,吕玉琪,刘唱,杜青文,谢博. 矿井巷道风速智能感知技术研究进展. 矿产保护与利用. 2024(04): 124-134 .
![]() | |
20. |
张大卫. 条件复杂的老矿井通风系统优化设计. 煤炭科技. 2024(04): 158-161+166 .
![]() | |
21. |
秦桐,郭朝伟,邵昊,孙耀辉. 流场对采空区温度分布演化规律的影响研究. 煤矿安全. 2024(09): 110-117 .
![]() | |
22. |
刘海胜,陈诚,李瑞卿,郑义. 基于小生境粒子群优化特征图的矿井通风网络设计. 矿山机械. 2024(10): 5-9 .
![]() | |
23. |
毛灯广,孙建国. 智能通风系统在矿井火灾防控中的应用研究. 内蒙古煤炭经济. 2024(18): 139-141 .
![]() | |
24. |
贾瞳,马恒,高科. 引入风流热流耦合特性的智能通风系统状态重构参数修正. 安全与环境学报. 2024(11): 4316-4328 .
![]() | |
25. |
陈永平,刘荣华,陈世强,刘东,李洋溢,王潇. 对旋轴流通风机叶轮内能量传递过程与演变特性. 煤炭科学技术. 2024(11): 356-367 .
![]() | |
26. |
宫平,赵艳,周明涵. 基于模糊PID控制的矿井智能通风控制系统设计. 矿山机械. 2024(12): 58-62 .
![]() | |
27. |
杜常博,程传旺,易富,黄惠杰,孙玮泽,陶晗. 复配表面活性剂对烟煤润湿性影响及微观机理研究. 煤炭科学技术. 2024(11): 346-355 .
![]() | |
28. |
吴奉亮,王桐. 有限实测风量下矿井风网校准的二次规划模型. 煤炭科学技术. 2024(12): 154-164 .
![]() | |
29. |
李金虎,黄珏洁,陆伟,徐天硕,汪洋. 煤中高活性含碳固体自由基与煤自燃反应性的相关关系. 煤炭科学技术. 2024(12): 127-142 .
![]() | |
30. |
戴春雷. 我国矿山智能化研究进展及大模型应用前景. 工矿自动化. 2024(S2): 1-11+22 .
![]() | |
31. |
杨波,梁强强. 基于智能决策的公乌素煤业公司智能通风系统研究. 能源科技. 2023(03): 54-58 .
![]() | |
32. |
刘坦. 矿井智能通风管控系统架构研究. 煤矿机械. 2023(10): 55-57 .
![]() | |
33. |
藏英涵,李先福,吝曼卿,秦孙巍,宋世杰,陈洋洋. 磷矿井下通风系统风险评估与监测预警研究. 矿业研究与开发. 2023(11): 115-121 .
![]() | |
34. |
卫桢. 煤矿通风系统智能化改造研究. 煤矿机械. 2023(12): 118-121 .
![]() | |
35. |
高忠国,温国惠,高建新,刘馨,侯泽民. 基于云平台的矿井智能通风监测与控制系统设计. 矿山机械. 2023(11): 64-70 .
![]() | |
36. |
胡邦钊,杨应迪. 基于矿井风阻在线测定的监测传感器布设研究. 华北科技学院学报. 2023(06): 38-43 .
![]() | |
37. |
卞俊,陈晓晶,蒋伟,周李兵. 煤矿巷道全自动测风装置及关键技术. 煤矿机电. 2023(05): 34-39 .
![]() | |
38. |
王义均,张盛英. 智能通风技术在煤矿中的具体应用. 内蒙古煤炭经济. 2023(24): 157-159 .
![]() |