ZHANG Fengda. Study on lithologic effect of mining-induced failure mechanism of coal seam floor[J]. Coal Science and Technology,2023,51(11):166−178
. DOI: 10.13199/j.cnki.cst.2023-0309Citation: |
ZHANG Fengda. Study on lithologic effect of mining-induced failure mechanism of coal seam floor[J]. Coal Science and Technology,2023,51(11):166−178 . DOI: 10.13199/j.cnki.cst.2023-0309 |
In order to obtain the mining failure characteristics of coal seam floor with different lithology, the Mohr circle solution of the influence of different internal friction angles on the strength of rock mass is established, and the correlation formula between the ratio of the maximum floor failure depth at the end of the stope to the maximum floor failure depth in the goaf and the internal friction angle is constructed. Using FLAC3D numerical simulation software, the distribution characteristics of plastic zone, maximum shear stress and elastic strain energy of coal seam floor under different lithology conditions are analyzed. From the perspective of energy accumulation and dissipation, the generalized model of mining failure mode of coal seam floor is established. Finally, the measured data of 19110 working face at Pingshuo mine area is verified. The results show that under the action of advance abutment pressure, weak rock is prone to shear failure, while the medium hard rock or hard rock without shear failure still has the possibility of further failure under the effect of mining unloading. It is found that with the increase of internal friction angle of coal seam floor rock, the maximum value of mining failure range of coal seam floor will gradually shift from the end of stope to the rear of goaf. Compared with the lithology of medium hard rock or hard rock in coal seam floor, the shear stress and elastic strain energy of coal seam floor rock mass with extremely soft rock or soft rock have obvious attenuation near the stope and transfer to the deep part, resulting in an obvious plastic zone at the end of the stope. The mining failure area of coal seam floor is divided into energy release area, energy bearing area and energy balance area. Compared with the weak or extremely weak coal seam floor rock, the distribution range of energy release area of medium hard or hard coal seam floor rock is smaller or even missing, mainly through energy bearing area and energy balance area to achieve the balance of mining disturbance energy. Through field measurement, the failure mode of coal seam floor has been verified. Under the action of mining unloading, the coal seam floor is further damaged, the lithology of the coal seam floor is fine sandstone, limestone and other hard rock mass. The coal seam floor changed from shear failure to shear-tensile deformation composite failure.
[1] |
彭苏萍, 王金安. 承压水体上安全采煤[M]. 北京: 煤炭工业出版社, 2001.
|
[2] |
张金才,刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报,1990,15(2):46−54.
ZHANG Jincai,LIU Tianquan. On depth of fissured zone in seam floor resulted from coal extraction and its distribution characterisrcs[J]. Journal of China Coal Society,1990,15(2):46−54.
|
[3] |
张风达,高召宁,孟祥瑞. 采场底板塑性区分布及破坏机理研究[J]. 长江科学院院报,2012,29(11):59−61. doi: 10.3969/j.issn.1001-5485.2012.11.013
ZHANG Fengda,GAO Zhaoning,MENG Xiangrui. Failure mechanism and plastic zone distribution of coal mining floor[J]. Journal of Yangtze River Scientific Research Institute,2012,29(11):59−61. doi: 10.3969/j.issn.1001-5485.2012.11.013
|
[4] |
张风达,申宝宏,康永华. 煤层底板破坏机理分析及最大破坏深度计算[J]. 矿业安全与环保,2015,42(3):58−61.
ZHANG Fengda,SHEN Baohong,KANG Yonghua. Failure mechanism of coal seam floor and calculation of maximum breaks depth[J]. Mining Safety & Environmental Protection,2015,42(3):58−61.
|
[5] |
孟祥瑞,徐铖辉,高召宁,等. 采场底板应力分布及破坏机理[J]. 煤炭学报,2010,35(11):1832−1836. doi: 10.13225/j.cnki.jccs.2010.11.012
MENG Xiangrui,XU Chenghui,GAO Zhaoning,et al. Stress distribution and damage mechanism of mining floor[J]. Journal of China Coal Society,2010,35(11):1832−1836. doi: 10.13225/j.cnki.jccs.2010.11.012
|
[6] |
王连国,韩 猛,王占盛,等. 采场底板应力分布与破坏规律研究[J]. 采矿与安全工程学报,2013,30(3):317−322.
WANG Lianguo,HAN Meng,WANG Zhansheng,et al. Stress distribution and damage law of mining floor[J]. Journal of Mining & Safety Engineering,2013,30(3):317−322.
|
[7] |
刘伟韬,穆殿瑞,谢祥祥,等. 倾斜煤层底板采动应力分布规律及破坏特征[J]. 采矿与安全工程学报,2018,35(4):756−764. doi: 10.13545/j.cnki.jmse.2018.04.013
LIU Weitao,MU Dianrui,XIE Xiangxiang,et al. Rules of stress distributions and failure characteristics in inclined coal seam floor due to mining[J]. Journal of Mining & Safety Engineering,2018,35(4):756−764. doi: 10.13545/j.cnki.jmse.2018.04.013
|
[8] |
李春元,张 勇,彭 帅,等. 深部开采底板岩体卸荷损伤的强扰动危险性分析[J]. 岩土力学,2018,39(11):3957−3968. doi: 10.16285/j.rsm.2017.2053
LI Chunyuan,ZHANG Yong,PENG Shuai,et al. Strong disturbance hazard analysis of unloading damage for floor rock mass in deep coal mining[J]. Rock and Soil Mechanics,2018,39(11):3957−3968. doi: 10.16285/j.rsm.2017.2053
|
[9] |
冯 强,蒋斌松. 基于积分变换采场底板应力与变形解析计算[J]. 岩土力学,2015,36(12):3482−3488. doi: 10.16285/j.rsm.2015.12.019
FENG Qiang,JIANG Binsong. Analytic solution for stress and deformation of stope floor based on integral transform[J]. Rock and Soil Mechanics,2015,36(12):3482−3488. doi: 10.16285/j.rsm.2015.12.019
|
[10] |
李家卓,谢广祥,王 磊,等. 深部煤层底板岩层卸荷动态响应的变形破裂特征研究[J]. 采矿与安全工程学报,2017,34(5):876−883. doi: 10.13545/j.cnki.jmse.2017.05.008
LI Jiazhuo,XIE Guangxiang,WANG Lei,et al. Mechanical mechanism of dynamic fracture evolution of coal floor unloading in deep mining[J]. Journal of Mining & Safety Engineering,2017,34(5):876−883. doi: 10.13545/j.cnki.jmse.2017.05.008
|
[11] |
王作宇, 刘鸿泉. 承压水上采煤[M]. 北京: 煤炭工业出版社, 1993.
|
[12] |
鲁海峰,孟祥帅,颜 伟,等. 采煤工作面层状结构底板采动稳定及破坏深度的圆弧滑动解[J]. 岩土力学,2020,41(1):166−174.
LU Haifeng,MENG Xiangshuai,YAN Wei,et al. Circular sliding solution of mining stability and failure depth of floor layered structure on coal face[J]. Rock and Soil Mechanics,2020,41(1):166−174.
|
[13] |
鲁海峰,姚多喜,梁修雨,等. 采动底板横观各向同性岩体应力解析解[J]. 地下空间与工程学报,2013,9(5):1050−1056.
LU Haifeng,YAO Duoxi,LIANG Xiuyu,et al. Analytical solution of stress in a transversely isotropic floor rock mass under ming[J]. Chinses Journal of Underground Space and Engineering,2013,9(5):1050−1056.
|
[14] |
鲁海峰,姚多喜. 采动底板层状岩体应力分布规律及破坏深度研究[J]. 岩石力学与工程学报,2014,33(10):2030−2039. doi: 10.13722/j.cnki.jrme.2014.10.009
LU Haifeng,YAO Duoxi. Stress distribution and failure depth of layered rock mass of mining floor[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2030−2039. doi: 10.13722/j.cnki.jrme.2014.10.009
|
[15] |
朱术云,曹丁涛,周海洋,等. 采动底板岩性及组合结构对破坏深度的制约作用[J]. 采矿与安全工程学报,2014,31(1):90−96. doi: 10.13545/j.issn1673-3363.2014.01.015
ZHU Shuyun,CAO Dingtao,ZHOU Haiyang,et al. Restrictive function of lithology and its composite structure on deformation and failure depth of mining coal seam floor[J]. Journal of Mining & Safety Engineering,2014,31(1):90−96. doi: 10.13545/j.issn1673-3363.2014.01.015
|
[16] |
张玉军,张风达,张志巍,等. 采动煤层底板层次性破坏特征全空间多参量协同监测[J]. 煤炭科学技术,2022,50(2):86−94.
ZHANG Yujun,ZHANG Fengda,ZHANG Zhiwei,et al. Full-space multi-parameter cooperative monitoring of failure hierarchy characteristics of mining coal seam floor[J]. Coal Science and Technology,2022,50(2):86−94.
|
[17] |
BRADY B H G, BROWN E T. 地下采矿岩石力学[M]. 北京: 煤炭工业出版社, 1990.
|
[18] |
王 仁. 塑性力学引论[M]. 北京: 北京大学出版社, 1982.
|
[19] |
张风达,申宝宏,康永华. 考虑卸荷作用的底板突水破坏机制研究[J]. 岩土力学,2016,37(2):431−438. doi: 10.16285/j.rsm.2016.02.016
ZHANG Fengda,SHEN Baohong,KANG Yonghua. Study on water inrush failure mechanism of mining floor under unloading effect[J]. Rock and Soil Mechanics,2016,37(2):431−438. doi: 10.16285/j.rsm.2016.02.016
|
[20] |
吴家龙. 弹性力学[M]. 北京: 高等教育出版社, 2009.
|
[21] |
陈希哲. 土力学地基基础[M]. 北京: 清华大学出版社, 2004.
|
[22] |
柏建彪,李文峰,王襄禹,等. 采动巷道底鼓机理与控制技术[J]. 采矿与安全工程学报,2011,28(1):1−5. doi: 10.3969/j.issn.1673-3363.2011.01.001
BAI Jianbiao,LI Wenfeng,WANG Xiangyu,et al. Mechanism of floor heave and control technology of roadway induced by mining[J]. Journal of Mining & Safety Engineering,2011,28(1):1−5. doi: 10.3969/j.issn.1673-3363.2011.01.001
|
[23] |
胡炳南, 张华兴, 申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京: 煤炭工业出版社, 2017.
|
1. |
王卫光,乔旭,杨峰. 探地雷达在华阳一矿隐伏陷落柱构造探测中的应用. 煤矿现代化. 2024(02): 64-67+72 .
![]() | |
2. |
吴钰晶. 基于峰值检测与栅格化二次拟合算法的微粗糙裸露断面拾取方法. 煤炭工程. 2024(12): 155-160 .
![]() | |
3. |
张鑫辉. 探地雷达在煤矿地质预测预报工作中的应用研究. 内蒙古煤炭经济. 2023(08): 163-165 .
![]() |