Advance Search
SUN Wenbin,YANG Hui,ZHAO Jinhai,et al. Basic experimental research on the delineation of the evolutionary process of fault water inrush[J]. Coal Science and Technology,2023,51(7):118−128. DOI: 10.13199/j.cnki.cst.2023-0350
Citation: SUN Wenbin,YANG Hui,ZHAO Jinhai,et al. Basic experimental research on the delineation of the evolutionary process of fault water inrush[J]. Coal Science and Technology,2023,51(7):118−128. DOI: 10.13199/j.cnki.cst.2023-0350

Basic experimental research on the delineation of the evolutionary process of fault water inrush

Funds: 

National Natural Science Foundation of China (5197417272274131); Mount Taishan Scholars Project (tsqn202211152)

More Information
  • Received Date: March 18, 2023
  • Available Online: June 16, 2023
  • Coal mining is seriously threatened by fault water inrush, showing the disaster characteristics of hysteresis and concealment. Mastering the evolution mechanism and process law of fault water inrush disaster has important theoretical guiding significance for carrying out deep water prevention and control work. By constructing water inrush evolution analysis model , the conduction path of confined water and the evolution characteristics of fault zone are analyzed. Using true triaxial rock test system of coupled stress-seepage , combined with acoustic emission and digital speckle technology, large-size rock-like specimens containing fault fracture zone fillings were designed. The instability and failure characteristics of specimens with different lithologic fillings and fault occurrences during biaxial loading were studied. The acoustic emission events and specimen deformation characteristics were obtained. Finally, the modified and upgraded mining floor water inrush simulation test system and parallel electrical on-line monitoring, stress and water pressure monitoring subsystems were used to reproduce the whole process of mining fault water inrush evolution in the laboratory, and the evolution characteristics of monitoring parameters were obtained. The results show that the response of fault zone to mining disturbance is stronger, and it is easier to destroy and destabilize to provide space for confined water conduction. To a certain extent, the nature of fault fillings determines the difficulty of fault activation, then affects the temporal and spatial evolution process of fault water inrush. The fault tip is obviously affected by fluid-solid coupling. The cracks generated by the fault zone and the aquiclude undergo the initiation-expansion-through stage, the relative position relationship between the fault and the working face determines the time and space position of the fault evolution zone and the floor failure zone. According to the conduction path of confined water, the process of fault water inrush is divided into three stages : fault activation, water conduction, double zone (fault evolution zone and floor failure zone) docking, the stage delineation of fault water inrush evolution process are realized.

  • [1]
    国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[N]. 中国信息报. 2023-02-28.
    [2]
    曾一凡,刘晓秀,武 强,等. 双碳背景下“煤-水-热”正效协同共采理论与技术构想[J]. 煤炭学报,2023,48(2):538−550. doi: 10.13225/j.cnki.jccs.XH22.1359

    ZENG Yifan,LIU Xiaoxiu,WU Qiang,et al. Theory and technical conception of coal-water-thermal positive synergistic co-extraction under the dual carbon background[J]. Journal of China Coal Society,2023,48(2):538−550. doi: 10.13225/j.cnki.jccs.XH22.1359
    [3]
    武 强,郭小铭,边 凯,等. 开展水害致灾因素普查防范煤矿水害事故发生[J]. 中国煤炭,2023,49(1):3−15.

    WU Qiang,GUO Xiaoming,BIAN Kai,et al. Carrying out general survey of the water disaster-causing factors to prevent the occurrence of coal mine water disasters[J]. China Coal,2023,49(1):3−15.
    [4]
    陈军涛. 深部开采底板破裂与裂隙演化基础试验研究[M]. 北京: 中国矿业大学出版社, 2019.
    [5]
    边 凯,李思宇,刘 博,等. 承压水上含断层煤层开采底板突水规律研究[J]. 煤矿安全,2022,53(6):169−177. doi: 10.13347/j.cnki.mkaq.2022.06.027

    BIAN Kai,LI Siyu,LIU Bo,et al. Study on water inrush law of mining floor in coal seam with fault above confined water[J]. Safety in Coal Mines,2022,53(6):169−177. doi: 10.13347/j.cnki.mkaq.2022.06.027
    [6]
    韩科明, 于秋鸽, 张华兴, 等. 上下盘开采影响下断层滑移失稳力学机制. [J]. 煤炭学报, 2020, 45(4): 1327 -1335.

    HAN Keming, YU Qiuge, ZHANG Huaxing, et al. Mechanism of fault activation when mining on hanging-wall and footwall[J]. Journal of China Coal Society, 2020, 45( 4) : 1327-1335.
    [7]
    于秋鸽, 张华兴, 张玉军, 等. 采动影响下断层活化机理及影响因素分析. [J]. 煤炭学报, 2019, 44(S1) : 18-30.

    YU Qiuge, ZHANG Huaxing, ZHANG Yujun, et al. Analysis of fault activation mechanism and influencing factors caused by mining[J]. Journal of China Coal Society, 2019 44( S1) : 18-30.
    [8]
    杨善安. 采场底板断层突水及其防治方法[J]. 煤炭学报,1994,19(6):620−625.

    YANG Shan’an. Prevention and control of water inrush from faults in floor rocks in the workings[J]. Journal of China Coal Society,1994,19(6):620−625.
    [9]
    黎良杰,钱鸣高,李树刚. 断层突水机理分析[J]. 煤炭学报,1996,21(2):119−123. doi: 10.13225/j.cnki.jccs.1996.02.002

    LI Liangjie,QIAN Minggao,LI Shugang. Mechanism of water-inrush through fault[J]. Journal of China Coal Society,1996,21(2):119−123. doi: 10.13225/j.cnki.jccs.1996.02.002
    [10]
    孙文斌,张士川,李杨杨,等. 固流耦合相似模拟材料研制及深部突水模拟试验[J]. 岩石力学与工程学报,2015,34(S1):2665−2670.

    SUN Wenbin,ZHANG Shichuan,LI Yangyang,et al. Development application of solid-fluid coupling similar for floor strata and simation test of water-inrush in deep mining[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):2665−2670.
    [11]
    李杨杨,张士川,孙煕震,等. 煤层采动底板突水演变过程可视化试验平台研制与试验研究[J]. 煤炭学报,2021,46(11):3515−3524. doi: 10.13225/j.cnki.jccs.2020.1435

    LI Yangyang,ZHANG Shichuan,SUN Xizhen,et al. Development and experimental research on the visualization test platform for water inrush evolution process of coal seam mining floor[J]. Journal of China Coal Society,2021,46(11):3515−3524. doi: 10.13225/j.cnki.jccs.2020.1435
    [12]
    史莉红,武守鑫,刘 冲,等. 断层带承压水导升模拟试验系统研制与应用[J]. 煤炭科学技术,2019,47(7):136−141. doi: 10.13199/j.cnki.cst.2019.07.016

    SHI Lihong,WU Shouxin,LIU Chong,et al. Development and application of simulation test system for confined water conduction in fault zone[J]. Coal Science and Technology,2019,47(7):136−141. doi: 10.13199/j.cnki.cst.2019.07.016
    [13]
    王进尚,姚多喜,黄 浩. 煤矿隐伏断层递进导升突水的临界判据及物理模拟研究[J]. 煤炭学报,2018,43(7):2014−2020. doi: 10.13225/j.cnki.jccs.2017.1252

    WANG Jinshang,YAO Duoxi,HUANG Hao. Critical criterion and physical simulation research on progressive ascending water inrush in hidden faults of coal mines[J]. Journal of China Coal Society,2018,43(7):2014−2020. doi: 10.13225/j.cnki.jccs.2017.1252
    [14]
    张玉军,张志巍,李友伟. 含隐伏断层煤层底板承压水采动导升机制研究[J]. 采矿与安全工程学报,2023,40(1):17−24. doi: 10.13545/j.cnki.jmse.2021.0501

    ZHANG Yujun,ZHANG Zhiwei,LI Youwei. Study on the mechanism of confined water lifting in coal seam floor with a hidden fault[J]. Journal of Mining & Safety Engineering,2023,40(1):17−24. doi: 10.13545/j.cnki.jmse.2021.0501
    [15]
    马 丹,段宏宇,张吉雄,等. 断层破碎带岩体突水灾害的蠕变−冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报,2021,40(9):1751−1763. doi: 10.13722/j.cnki.jrme.2021.0572

    MA Dan,DUAN Hongyu,ZHANG Jixiong,et al. Experimental investigation of creep-erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1751−1763. doi: 10.13722/j.cnki.jrme.2021.0572
    [16]
    李仕杰,黄 震,廖永斌,等. 深部巷道断层破碎带渗透性测试及动态监测研究[J]. 煤矿安全,2019,50(7):50−55. doi: 10.13347/j.cnki.mkaq.2019.07.012

    LI Shijie,HUANG Zhen,LIAO Yongbin,et al. Study on permeability test and dynamic monitoring of fault in deep roadway[J]. Safety in Coal Mines,2019,50(7):50−55. doi: 10.13347/j.cnki.mkaq.2019.07.012
    [17]
    于海涛. 深部断层带微观特征及其渗透突水演化规律模拟研究[D]. 徐州: 中国矿业大学, 2021.

    YU Haitao.Research on the microscopic characteristics of deep fault zone and simulation on evolution law of seepage water inrush[D].Xuzhou:China University of Mining and Technology, 2021.
    [18]
    刘盛东,刘 静,戚 俊,等. 矿井并行电法技术体系与新进展[J]. 煤炭学报,2019,44(8):2336−2345. doi: 10.13225/j.cnki.jccs.KJ19.0575

    LIU Shengdong,LIU Jing,QI Jun,et al. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society,2019,44(8):2336−2345. doi: 10.13225/j.cnki.jccs.KJ19.0575
    [19]
    刘 静,刘盛东,王 勃,等. 水岩耦合演化自然电场近源效应与临灾前兆[J]. 煤炭学报,2022,47(3):1286−1295.

    LIU Jing,LIU Shengdong,WANG Bo,et al. Near-source effect of natural electric field in water-rock coupling evolution and its imminent disaster precursors[J]. Journal of China Coal Society,2022,47(3):1286−1295.
    [20]
    原富珍,马 克,庄端阳,等. 基于微震监测的董家河煤矿底板突水通道孕育机制[J]. 煤炭学报,2019,44(6):1846−1856. doi: 10.13225/j.cnki.jccs.2018.0941

    YUAN Fuzhen,MA Ke,ZHUANG Duanyang,et al. Preparation mechanism of water inrush channels in bottom floor of Dongjiahe Coal Mine based on microseismic monitoring[J]. Journal of China Coal Society,2019,44(6):1846−1856. doi: 10.13225/j.cnki.jccs.2018.0941
    [21]
    郭惟嘉,张士川,孙文斌,等. 深部开采底板突水灾变模式及试验应用[J]. 煤炭学报,2018,43(1):219−227. doi: 10.13225/j.cnki.jccs.2017.0774

    GUO Weijia,ZHANG Shichuan,SUN Wenbin,et al. Experimental and analysis research on water inrush catastrophe mode from coal seam floor in deep mining[J]. Journal of China Coal Society,2018,43(1):219−227. doi: 10.13225/j.cnki.jccs.2017.0774
    [22]
    卜万奎. 采场底板断层活化及突水力学机理研究[D]. 徐州: 中国矿业大学, 2009.

    BU Wankui. Research on mechanical mechanism of fault activation and water inrush from faults in mining floor[D]. Xuzhou: China University of Mining and Technology, 2009.
    [23]
    朱光丽. 采动诱发断层活化(滞后)突水致灾机理试验及评价研究[D]. 青岛: 山东科技大学, 2018.

    ZHU Guangli. Experimental on mechanism and evaluation of fault activation conducting water inrush by mining[D]. Qingdao: Shandong University of Science and Technology, 2018.
    [24]
    安泰龙,姚邦华,李 硕,等. 底板承压水作用下断层破碎带岩体冲蚀-渗流灾变规律研究[J]. 采矿与安全工程学报,2023,40(2):354−360. doi: 10.13545/j.cnki.jmse.2021.0586

    AN Tailong,YAO Banghua,LI Shuo,et al. Study on the fault erosion-seepage rule under the effect of floor confined water[J]. Journal of Mining & Safety Engineering,2023,40(2):354−360. doi: 10.13545/j.cnki.jmse.2021.0586
    [25]
    张 鹏,朱学军,孙文斌,等. 采动诱发充填断层活化滞后突水机制研究[J]. 煤炭科学技术,2022,50(3):136−143. doi: 10.13199/j.cnki.cst.2021-0809

    ZHANG Peng,ZHU Xuejun,SUN Wenbin,et al. Study on the mechanism of delayed water inrush caused by mining-induced filling fault activation[J]. Coal Science and Technology,2022,50(3):136−143. doi: 10.13199/j.cnki.cst.2021-0809
    [26]
    郭孔灵,杨 磊,盛祥超,等. 水力耦合作用下含三维裂隙类岩石材料的破裂力学行为及声发射特征[J]. 岩土力学,2019,40(11):4380−4390. doi: 10.16285/j.rsm.2018.2052

    GUO Kongling,YANG Lei,SHENG Xiangchao,et al. Fracture mechanical behavior and AE characteristics of rock-like material containing 3-D crack under hydro-mechanical coupling[J]. Rock and Soil Mechanics,2019,40(11):4380−4390. doi: 10.16285/j.rsm.2018.2052
    [27]
    王鹏飞. 渗压作用下断层带岩体断裂导渗演化机制研究[D]. 北京: 北京科技大学, 2019.

    WANG Pengfei. Study on evolution mechanism of fracture and seepage of fault zone rockmass under osmotic pressure [D]. Beijing: University of Science and Technology Beijing, 2019.
    [28]
    孔 凯,尹大伟,张 虎,等. 岩-煤组合体试样变形场与能量演化特征试验研究[J]. 山东科技大学学报(自然科学版),2022,41(5):30−39. doi: 10.16452/j.cnki.sdkjzk.2022.05.004

    KONG Kai,YIN Dawei,ZHANG Hu,et al. Experimental study on deformation field and energy evolution characteristics of rock-coal composite samples[J]. Journal of Shandong University of Science and Technology(Natural Science),2022,41(5):30−39. doi: 10.16452/j.cnki.sdkjzk.2022.05.004
    [29]
    陈军涛,李 明,程斌斌,等. 加载速率对大尺寸试样破裂特性的影响规律[J]. 煤田地质与勘探,2019,47(5):163−172. doi: 10.3969/j.issn.1001-1986.2019.05.023

    CHEN Juntao,LI Ming,CHENG Binbin,et al. Influence of loading rate on the fracture characteristics of large-size specimen[J]. Coal Geology & Exploration,2019,47(5):163−172. doi: 10.3969/j.issn.1001-1986.2019.05.023
  • Related Articles

    [1]WANG Yuanbin, GUO Yaru, LIU Jia, WANG Xu, WU Bingchao, LIU Meng. Low illumination image enhancement algorithm of CycleGAN coal mine based on attention mechanism and Dilated convolution[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 375-383. DOI: 10.12438/cst.2023-1597
    [2]DONG Fei, ZHANG Di, GE Kunpeng, CHEN Junjie, XU Xinyue. Fault diagnosis and inference of hoist main bearing based on transfer learning and ontology[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 249-266. DOI: 10.12438/cst.2024-0606
    [3]CHEN Wei, REN Peng, AN Wenni, TIAN Zijian, ZHANG Fan. Mine object detection based on space attention in coal mine edge intelligent surveillance images[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 201-210. DOI: 10.12438/cst.2022-2140
    [4]CUI Wei, MENG Guoying, WAN Xingwei. Fault diagnosis method of rolling bearing of mine main fan based on transfer learning[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 280-287. DOI: 10.12438/cst.2023-0903
    [5]CHENG Jian, MI Lifei, LI Hao, LI Heping, WANG Guangfu, MA Yongzhuang. Coalmine image super-resolution reconstruction via fusing multi-dimensional feature and residual attention network[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(11): 117-128. DOI: 10.12438/cst.2024-1055
    [6]WANG Maosen, BAO Jiusheng, BAO Zhouyang, YIN Yan, WANG Xiangsai, GE Shirong. Research on mine underground inspection robot target detection algorithm based on pyramid structure and attention mechanism coupling[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(6): 206-215. DOI: 10.12438/cst.2023-1071
    [7]ZHANG Xuhui, PAN Gege, GUO Huanhuan, MAO Qinghua, FAN Hongwei, WAN Xiang. Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 256-263.
    [8]WANG Peizhen, YU Chen, XUE Zihan, ZHANG Dailin. Transfer learning based identification model for macerals of exinite in coal[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 220-227.
    [9]GAO Yasong, ZHANG Buqin, LANG Liying. Coal and gangue recognition technology and implementation based on deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(12): 202-208.
    [10]ZHANG Zelin, ZHANG Zhiwei, HU Qi, WANG Li. Study on multi-product coal image classification method based on deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 117-123.
  • Cited by

    Periodical cited type(12)

    1. 赵娅,管玉,贾迪. 基于深度学习的微观剩余油赋存形态分类识别综述. 计算机系统应用. 2025(01): 26-36 .
    2. 杨焜,王宏伟,张夫净,李进,张之好,李正龙. 多尺度复杂环境下的锚孔定位方法. 矿业研究与开发. 2025(01): 126-134 .
    3. 李梅,张鹏鹏,李元琛. AI赋能智能矿山:应用场景及未来展望. 煤炭经济研究. 2025(02): 161-169 .
    4. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 . 本站查看
    5. 卢才武,宋义良,江松,章赛,王懋,纪凡. 基于改进U-net的少样本煤岩界面图像分割方法. 金属矿山. 2024(01): 149-157 .
    6. 李季,马潇锋,吴洁琪,强旭博,武荔阳,闫博,董继辉,陈朝森. 融合钻孔地质信息的煤岩图像识别方法. 工矿自动化. 2024(08): 38-43+68 .
    7. 田培忠. 基于ResNet网络层数的露天矿道路识别效果研究. 露天采矿技术. 2024(05): 59-64 .
    8. 张传伟,何正伟,路正雄,李林岳,龚凌霄,张刚强,潘巧娜. 基于MRU-Net++的极薄煤层综采面煤岩界面图像识别. 煤炭科学技术. 2024(11): 103-116 . 本站查看
    9. 武强,张帅,杜沅泽,徐华,赵颖旺. 基于MRAU视频分割模型的矿井涌(突)水风险识别方法. 煤炭科学技术. 2024(11): 17-28 . 本站查看
    10. 吴安坤,郭军成,王强,冷宇. 基于改进DeepLabv3+网络的气象卫星影像雷暴识别. 气象科技. 2024(06): 775-786 .
    11. 周素静,康楠,余敏. 基于变形分数阶Lorenz混沌系统的煤岩界面图像分割方法. 金属矿山. 2024(12): 246-251 .
    12. 解北京,李恒,董航,栾铮,张奔,李晓旭. 基于多尺度特征融合井下猴车载人状态的智能识别算法与应用. 煤炭科学技术. 2024(12): 272-286 . 本站查看

    Other cited types(10)

Catalog

    Article views (247) PDF downloads (140) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return