LI Shugang,LIU Lidong,ZHAO Pengxiang,et al. Key technologies for extraction and identification of gas target area for pressure relief in inclined thick coal seam[J]. Coal Science and Technology,2023,51(8):105−115
. DOI: 10.13199/j.cnki.cst.2023-0414Citation: |
LI Shugang,LIU Lidong,ZHAO Pengxiang,et al. Key technologies for extraction and identification of gas target area for pressure relief in inclined thick coal seam[J]. Coal Science and Technology,2023,51(8):105−115 . DOI: 10.13199/j.cnki.cst.2023-0414 |
In order to study the dip angle effect on the evolution law of the target area for pressure relief gas drainage in inclined thick coal seams, the physical similarity simulation test and theoretical analysis were combined to study the fracture evolution in the target area under different coal seam dip angles. The evolution law of broken fracture’s width, the area proportion of bed-separated fracture, and the fractal dimension of fracture with the change of coal seam dip angle in the target area were obtained, and then the coal seam dip angle effect model of the targeted area evolution was established. The results showed that the broken fracture’s width presented the distribution characteristics that the boundary area on both sides of the goaf was greater than that in the middle, and the low horizon was greater than that in the higher horizon. What’s more, the broken fracture’s width was strongly affected by the hinged beam. With the increase of the coal seam dip angle (0° < 15° < 30°), the broken fracture’s width in the upper region of the first layer of hinged beam is significantly reduced compared with that in the lower region, which is only 52.8%, 64.3%, and 71.1%, respectively. The area proportion of bed-separated fracture in the dominant gas migration channel zone was the largest at the bottom, followed by the top, and the smallest in the middle. The fractal dimension of overlying fractures decreased first and then increased as a whole. The fracture evolution laws were obviously different on both sides of the layer where the hinged beam of the first layer and the minimum fractal dimension of the fracture were located. Therefore, the dominant channel belt of gas migration was divided into low-layer target areas, middle-layer target areas, and high-layer target areas according to the level of the spatial horizon. Finally, based on the theory of mining fracture ellipse belts and the dominant gas migration channel zone at the working face side, the mathematical equation of the target area in inclined thick coal seams was established considering the coal seam dip angle, and the basis for selection of pressure relief gas drainage methods in the targeted area was formed. It provided a reference for optimizing the parameters of pressure relief gas drainage in an inclined, thick coal seam working face.
[1] |
钱鸣高,许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报,1998,23(5):466−469.
QIAN Minggao,XU Jialin. Study on the “O-shape” circle distribution characteristics of mining-induced fractures in the overlaying strata[J]. Journal of China Coal Society,1998,23(5):466−469.
|
[2] |
袁 亮,郭 华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报,2011,36(3):357−365.
YUAN Liang,GUO Hua,SHEN Baotang,et al. Circular overlying zone at longwall panel for efficient methane capture of mutiple coal seams with low permeability[J]. Journal of China Coal Society,2011,36(3):357−365.
|
[3] |
李树刚,林海飞,赵鹏翔,等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报,2014,39(8):1455−1462.
LI Shugang,LIN Haifei,ZHAO Pengxiang,et al. Dynamic evolution of mining fissure elliptic paraboloid zone and extraction coal and gas[J]. Journal of China Coal Society,2014,39(8):1455−1462.
|
[4] |
伍永平,杨玉冰,王 同,等. 大倾角走向长壁伪俯斜采场支架稳定性分析[J]. 煤炭科学技术,2022,50(1):60−69.
WU Yongping,YANG Yubing,WANG Tong,et al. Stability analysis of support under gangue filling condition in pitching oblique mining area of steeply dipping seam[J]. Coal Science and Technology,2022,50(1):60−69.
|
[5] |
伍永平,刘旺海,解盘石,等. 大倾角煤层长壁伪俯斜采场围岩应力演化及顶板破断特征[J]. 煤矿安全,2020,51(9):222−227.
WU Yongping,LIU Wanghai,XIE Panshi,et al. Stress evolution and roof breaking characteristics of surrounding rock in oblique longwall mining area of steeply dipping seam[J]. Safety in Coal Mines,2020,51(9):222−227.
|
[6] |
来兴平,代晶晶,李 超. 急倾斜煤层开采覆岩联动致灾特征分析[J]. 煤炭学报,2020,45(1):122−130.
LAI Xingping,DAI Jingjing,LI Chao. Analysis on hazard characteristics of overburden structure in steeply inclined coal seam[J]. Journal of China Coal Society,2020,45(1):122−130.
|
[7] |
来兴平,刘简宁,崔 峰,等. 急斜煤层顶板裂隙扩展诱导能量时–空演变特征[J]. 西安科技大学学报,2018,38(4):562−568.
LAI Xingping,LIU Jianning,CUI Feng,et al. Spatio-temporal evolution mechanism of induced energy with roof-crack propagation in extremely steep coal seams[J]. Journal of Xi'an University of Science And Technology,2018,38(4):562−568.
|
[8] |
王红伟,伍永平,焦建强,等. 大倾角煤层大采高工作面倾角对煤壁片帮的影响机制[J]. 采矿与安全工程学报,2019,36(4):728−735, 752.
WANG Hongwei,WU Yongping,JIAO Jianqiang,et al. Study on effect of dip angle on coal wall spalling of working face with great mining height in steeply inclined coal seam[J]. Journal of Mining and Safety Engineering,2019,36(4):728−735, 752.
|
[9] |
王红伟,焦建强,伍永平,等. 急倾斜厚煤层短壁综放采场承载结构泛化特征[J]. 煤炭科学技术,2021,49(11):56−64.
WANG Hongwei,JIAO Jianqiang,WU Yongping,et al. Generalization characteristics of bearing structure in short wall fully-mechanized top-coal caving mining face of steeply inclined thick seam[J]. Coal Science and Technology,2021,49(11):56−64.
|
[10] |
薛成春,曹安业,郭文豪,等. 深部大倾角厚煤层开采能量演化规律与冲击地压发生机理[J]. 采矿与安全工程学报,2021,38(5):876−885.
XUE Chengchun,CAO Anye,GUO Wenhao,et al. Energy evolution law and rock burst mechanism of deep thick seams with large inclination[J]. Journal of Mining and Safety Engineering,2021,38(5):876−885.
|
[11] |
陈 梁. 采动影响下大倾角煤层巷道围岩破裂演化与失稳机理研究[D]. 徐州: 中国矿业大学, 2020.
CHEN Liang. Study on fracture evolution and instability mechanism of large dip coal seam roadway considering the effect of mining [D]. Xuzhou: China University of Mining and Technology, 2020.
|
[12] |
施 峰,王宏图,舒 才. 煤层倾角变化对采动覆岩变形规律影响的相似模拟试验研究[J]. 重庆大学学报,2018,41(12):36−45.
SHI Feng,WANG Hongtu,SHU Cai. Similar simulation study on the influence of seam angle change on deformation law of overburden strata in coal seam mining[J]. Journal of Chongqing University,2018,41(12):36−45.
|
[13] |
刘洪永,程远平,陈海栋,等. 高强度开采覆岩离层瓦斯通道特征及瓦斯渗流特性研究[J]. 煤炭学报,2012,37(9):1437−1443.
LIU Hongyong,CHENG Yuanping,CHRN Haidong,et al. Characteristics of mining gas channel and gas flow properties of overlying stratum in high intensity mining[J]. Journal of China Coal Society,2012,37(9):1437−1443.
|
[14] |
刘洪永,程远平,周红星,等. 综采长壁工作面推进速度对优势瓦斯通道的诱导与控制作用[J]. 煤炭学报,2015,40(4):809−815.
LIU Hongyong,CHENG Yuanping,ZHOU Hongxing,et al. Guidance and control effect of drawing speed on excellent gas channel at fully mechanized longwall face[J]. Journal of China Coal Society,2015,40(4):809−815.
|
[15] |
ZHAO Pengxiang,ZHUO Risheng,LI Shugang,et al. Fractal characteristics of methane migration channels in inclined coal seams[J]. Energy,2021,225:120127. doi: 10.1016/j.energy.2021.120127
|
[16] |
皮希宇. 煤层群采动卸压煤与覆岩裂隙演化特征及其对瓦斯抽采的影响[D]. 北京: 北京科技大学, 2021.
PI Xiyu. Evolution characteristics of cracks in coal and overlying strata caused by mining of coal seams and their influence on gas drainage [D]. Beijing: University of Science and Technology Beijing, 2021.
|
[17] |
林海飞, 李磊明, 李树刚, 等. 煤层群重复采动卸压瓦斯储运区演化规律实验研究[J]. 西安科技大学学报, 2021, 41(3): 385–393.
LIN Haifei, LI Leiming, LI Shugang, et al. Experimental study on evolution law of pressure relief gas storage and transportation area of repeated mining in coal seams [J]. Journal of Xi'an University of Science and Technology, 201, 41(3): 385–393.
|
[18] |
李树刚,徐培耘,林海飞,等. 倾斜煤层卸压瓦斯导流抽采技术研究与工程实践[J]. 采矿与安全工程学报,2020,37(5):1001−1008.
LI Shugang,XU Peiyun,LIN Haifei,et al. Technology research and engineering practice of pressure-relief gas diversion extraction in inclined coal seams[J]. Journal of Mining and Safety Engineering,2020,37(5):1001−1008.
|
[19] |
李树刚,乌日宁,赵鹏翔,等. 综采工作面上隅角瓦斯流动活跃区形成机理研究[J]. 煤炭科学技术,2019,47(1):207−213.
LI Shugang,WU Rining,ZHAO Pengxiang,et al. Study on formation mechanism of gas flow active area in upper corner of fully-machanized mining face[J]. Coal Science and Technology,2019,47(1):207−213.
|
[20] |
丁 洋,朱 冰,李树刚,等. 高突矿井采空区卸压瓦斯精准辨识及高效抽采[J]. 煤炭学报,2021,46(11):3565−3577.
DING Yang,ZHU Bing,LI Shugang,et al. Accurate identification and efficient drainage of relieved methane in goaf of high outburst mine[J]. Journal of China Coal Society,2021,46(11):3565−3577.
|
[21] |
李小琴,聂 鑫,郝国才. 煤矿采空区卸压空间分布特征研究[J]. 煤矿安全,2018,49(4):197−200.
LI Xiaoqin,NIE Xin,HAO Guocai. Study on spatial distribution characteristics of pressure relief in coal mine goaf research on spatial distribution characteristics of pressure relief in goaf of coal mine[J]. Safety in Coal Mines,2018,49(4):197−200.
|
[22] |
高建良,孙望望. J型通风工作面采空区漏风与瓦斯浓度分布规律研究[J]. 煤炭工程,2018,50(1):132−136.
GAO Jianliang,SUN Wangwang. Study on air leakage and gas concentration distribution law in working face goaf with J type ventilation system[J]. Coal Engineering,2018,50(1):132−136.
|
[23] |
高建良,李炫烨. 尾巷风量对“J”型通风工作面漏风及瓦斯分布的影响[J]. 煤矿安全,2017,48(8):166−169.
GAO Jianliang,LI Xuanye. Effect of air volume in tail gateway on air leakage and gas distribution in “J” type ventilation working face[J]. Safety in Coal Mines,2017,48(8):166−169.
|
[24] |
高建良,刘明信,徐 文. 高抽巷抽采对采空区漏风规律的影响研究[J]. 河南理工大学学报(自然科学版),2015,34(2):141−145.
GAO Jianliang,LIU Mingxin,XU Wen. Influence study on high-position extraction tunnel on air-leakage law in goaf[J]. Journal of Henan Polytechnic University(Natural Science),2015,34(2):141−145.
|
[25] |
张增辉,薛彦平. 基于“U”型下行通风的综放工作面瓦斯治理数值模拟研究[J]. 煤矿安全,2021,52(12):183−187, 193.
ZHANG Zenghui,XUE Yanping. Numerical simulation study on gas control in fully mechanized top coal caving face based on “U” downward ventilation[J]. Safety in Coal Mines,2021,52(12):183−187, 193.
|
[26] |
丁 洋,宜 艳,林海飞,等. 高强开采综放工作面瓦斯浓度空间分布规律研究[J]. 采矿与安全工程学报,2022,39(1):206−214.
DING Yang,YI Yan,LIN Haifei,et al. Spatial distribution law of gas concentration in the fully mechanized caving face of high intensity mining[J]. Journal of Mining and Safety Engineering,2022,39(1):206−214.
|
[27] |
杨 科,刘 帅. 深部远距离下保护层开采多关键层运移–裂隙演化–瓦斯涌出动态规律研究[J]. 采矿与安全工程学报,2020,37(5):991−1000.
YANG Ke,LIU Shuai. Rule of multi-key strata movement-fracture evolution-dynamics of gas emission in deep long distance lower protective layer mining[J]. Journal of Mining and Safety Engineering,2020,37(5):991−1000.
|
[28] |
许 江,刘龙荣,刘 东,等. 煤层瓦斯抽采过程中煤岩变形的物理模拟实验[J]. 煤炭学报,2015,40(3):562−570.
XU Jiang,LIU Longrong,LIU Dong,et al. Physical simulation of coal and rock deformation in the process of coal seam gas extraction[J]. Journal of China coal society,2015,40(3):562−570.
|
[29] |
许 江,刘龙荣,彭守建,等. 不同吸附性气体抽采过程中煤储层参数演化特征研究[J]. 岩土力学,2017,38(6):1647−1656.
XU Jiang,LIU Longrong,PENG Shoujian,et al. Evolution characteristics of coal reservoir parameters in different adsorption gas extraction process[J]. Rock and Soil Mechanics,2017,38(6):1647−1656.
|
[30] |
彭守建,贾 立,许 江,等. 煤层瓦斯抽采多物理场参数动态响应特征及其耦合规律[J]. 煤炭学报,2022,47(3):1235−1243.
PENG Shoujian,JIA Li,XU Jiang,et al. Dynamic response characteristics and coupling law of multi physical field parameters in coal seam gas drainage[J]. Journal of China Coal Society,2022,47(3):1235−1243.
|
[31] |
彭守建,张超林,梁永庆,等. 抽采瓦斯过程中煤层瓦斯压力演化规律的物理模拟试验研究[J]. 煤炭学报,2015,40(3):571−578.
PENG Shoujian,ZHANG Chaolin,LIANG Yongqing,et al. Physical simulation experiment on the evolution of gas pressure during CBM drainage[J]. Journal of China Coal Society,2015,40(3):571−578.
|
[32] |
赵鹏翔,卓日升,李树刚,等. 综采工作面推进速度对瓦斯运移优势通道演化的影响[J]. 煤炭科学技术,2018,46(7):99−108.
ZHAO Pengxiang,ZHUO Risheng,LI Shugang,et al. Advancing speed of fully-mechanized coal mining face affected to evolution of gas migration dominant channel[J]. Coal Science and Technology,2018,46(7):99−108.
|
[33] |
赵鹏翔,卓日升,李树刚,等. 综采工作面瓦斯运移优势通道演化规律采高效应研究[J]. 采矿与安全工程学报,2019,36(4):848−856.
ZHAO Pengxiang,ZHUO Risheng,LI Shugang,et al. Study on the mining height evolution law of the dominant channel of gas migration in fully mechanized mining face[J]. Journal of Mining and Safety Engineering,2019,36(4):848−856.
|
1. |
郭文兵,胡玉杭,胡超群,李龙翔,吴东涛,葛志博. 我国“三下”采煤技术体系与工程实践. 煤炭科学技术. 2025(01): 19-38 .
![]() | |
2. |
孙德宁. 采动影响下高压线塔基可调式基础改造加固技术研究. 煤矿现代化. 2024(01): 52-55+60 .
![]() | |
3. |
顾伟,王允卿. 厚硬覆岩下巨厚煤层开采转角塔塔线体稳定性演化特征研究. 采矿与安全工程学报. 2024(04): 730-740 .
![]() | |
4. |
夏军武,周宇,朱致淳,何源,于峻. 采煤沉陷区框架结构抗变形研究现状与展望. 煤炭工程. 2024(10): 100-107 .
![]() | |
5. |
隋来才,刘少炜,张普纲,芦文增,赵国贞,高强,赵建忠. 煤矿地下精准注浆技术与发展现状. 煤炭技术. 2024(11): 161-165 .
![]() |