BI Yinli,SONG Yaning,BAI Xuerui,et al. DSE and its metabolites on Medicago sativa L. growth promotion and its potential for ecological restoration in mining areas[J]. Coal Science and Technology,2023,51(12):90−99
. DOI: 10.13199/j.cnki.cst.2023-1105Citation: |
BI Yinli,SONG Yaning,BAI Xuerui,et al. DSE and its metabolites on Medicago sativa L. growth promotion and its potential for ecological restoration in mining areas[J]. Coal Science and Technology,2023,51(12):90−99 . DOI: 10.13199/j.cnki.cst.2023-1105 |
Coal mining has caused the reduction of land productivity in mining areas and exacerbated the problem of ecological fragility, while microbial combined plant reclamation technology is a commonly used means of ecological restoration in mining areas, and the appropriate inoculation method of microbial agents is of great significance for accelerating the ecological restoration in mining areas.Dark Septate Sndophytes(DSE) are a group of endophytic fungi ubiquitously existing in plant root systems, whose metabolites could function as plant growth stimulants. TakingMedicago sativa L.as the research object, four treatments were set up, including DSE hypha (HD), metabolite (MD), hypha and its metabolite (HD+MD) and blank control (CK), to explore the mechanism of DSE and its metabolite promoting effect onMedicago sativa L., under two inoculation methods of root dipping and simulated soil cultivation. The results showed thatMedicago sativa L.co-treated with hypha and its metabolites under root dipping method had the best growth potential. Compared to the control group, the total biomass, total chlorophyll, root volume and total nitrogen content increased by 83.78%, 35.54%, 132.12% and 82.16%, respectively. The colonization rate of DSE in the root system ofMedicago sativa L.could achieve 68.89%, dominated by the colonization in the hypha mode. Under simulated soil cultivation, DSE metabolites performed a significant growth-promoting effect onMedicago sativa L., and the colonization was dominated by the microsclerotia mode. The correlation analysis showed that compared with the inoculation method, the DSE inoculation treatment was significantly positively correlated with hypha colonization rate, microsclerotia colonization rate, total colonization rate, root length, root surface area, root projected area (P<0.05), and highly significantly positively correlated with aboveground fresh weight, root fresh weight, total fresh weight, root volume, total nitrogen and total potassium (P<0.01). DSE and its metabolites could regulate the growth ofMedicago sativa L.through colonization rate and photosynthesis, providing a theoretical basis for the development and utilization of green microbial fertilizer for ecological restoration in mining areas.
[1] |
AHIRWAL J,MAITI S K. Development of technosol properties and recovery of carbon stock after 16 years of revegetationon coal mine degraded lands[J]. Catena,2018,166:114−123. doi: 10.1016/j.catena.2018.03.026
|
[2] |
QUADROS P D de,ZHALNINA K,DAVIS-RICHARDSON A G, et al. Coal mining practices reduce the microbial biomass,richness and diversity of soil[J]. Applied Soil Ecology,2016,98:195−203. doi: 10.1016/j.apsoil.2015.10.016
|
[3] |
FENG Y,WANG J,BAI Z, et al. Effects of surface coal mining and land reclamation on soil properties:a review[J]. Earth-ScienceReviews,2019,191:12−25.
|
[4] |
张延旭,毕银丽,郭 楠,等. 接种不同丛枝菌根真菌对黄花苜蓿生长影响[J]. 煤炭学报,2019,44(12):3815−3822.
ZHANG Yanxu,BI Yinli,GUO Nan, et al. Effects of arbuscular mycorrhizal fungi on the growth of medicago falcata[J]. Journal of China Coal Society,2019,44(12):3815−3822.
|
[5] |
李全生. 东部草原区煤电基地开发生态修复技术研究[J]. 生态学报,2016,36(22):7049−7053.
LI Quansheng. Research on ecological restoration technology of coal-power base in eastern steppe of China[J]. Acta Ecologica Sinica,2016,36(22):7049−7053.
|
[6] |
瞿宋林,吴一凡,刘忠宽,等. 丛枝菌根真菌对紫花苜蓿生长发育特性的影响[J]. 草地学报,2022,30(10):2529−2534.
QU Songlin,WU Yifan,LIU Zhongkuan, et al. Research progress for effects of arbuscular mycorrhizal fungion growth and development of alfalfa[J]. Acta Agrestia Sinica,2022,30(10):2529−2534.
|
[7] |
刘雪强,南丽丽,郭全恩,等. 黄土高原半干旱区种植不同绿肥作物对土壤理化性质的影响[J]. 甘肃农业大学学报,2020,55(1):145−152.
LIU Xueqiang,NAN Lili,GUO Quanen, et al. Effects of planting different green manures on soil physical and chemical properties in semi-arid region of loess plateau[J]. Journal of Gansu Agricultural University,2020,55(1):145−152.
|
[8] |
谢 伟,钱晓彤,王东丽,等. 鄂尔多斯矿区排土场苜蓿恢复地土壤种子库的演变特征[J]. 中国水土保持学,2020,18(4):29−37.
XIE Wei,QIAN Xiaotong,WANG Dongli, et al. Evolution characteristics of soil seed bank during medicago sativa restoration in the dump of a mining area in Ordos[J]. Science of Soil and Water Conservation,2020,18(4):29−37.
|
[9] |
秦嘉海,金自学. 黑河流域盐渍土资源及紫花苜蓿改土培肥和生态恢复效应的研究[J]. 土壤通报,2006,37(6):1106−1109.
QIN Jiahai,JIN Zixue. Salinized soil resources in Heihe watershed and the effects of alfalfa on soil fertility and ecological reestablishment[J]. Chinese Journal of Soil Science,2006,37(6):1106−1109.
|
[10] |
JUMPPONEN A,TRAPPE J M. Dark septate endophytes:a review of facultative biotrophic root-colonizing fungi[J]. New Phytologist,1998,140(2):295−310. doi: 10.1046/j.1469-8137.1998.00265.x
|
[11] |
XU R B,LI T,SHEN M, et al. Evidence for a dark septate endophyte (exophiala pisciphila,H93) enhancing phosphorus absorption by maize seedlings[J]. Plant and Soil,2020,452(1/2):249−266. doi: 10.1007/s11104-020-04538-9
|
[12] |
LIU Y,WEI X L. Dark septate endophyte improves drought tolerance of ormosia hosiei hemsley & E. H. wilson by modulating root morphology,ultrastructure,and the ratio of root hormones[J]. Forests,2019,10(10):830−842. doi: 10.3390/f10100830
|
[13] |
MARTINA M G,BALDWIN A H,MAUL J E, et al. Dark septate endophyte improves salt tolerance of native and invasive lineages of phragmites australis[J]. The ISME Journal,2020,14(8):1943−1954. doi: 10.1038/s41396-020-0654-y
|
[14] |
WAEL Y,GABOR M K,PHILIPP F. Differential interaction of the dark septate endophyte cadophora sp. and fungal pathogens in vitro and in planta[J]. FEMS Microbiology Ecology,2019,95(12):fiz164. doi: 10.1093/femsec/fiz164
|
[15] |
YAKHIN O I,LUBYANOV A A,YAKHIN I A, et al. Biostimulants in plant science:a global perspective[J]. Frontiers in Plant Science,2016,7:2049−2080.
|
[16] |
徐润冰. 深色有隔内生真菌嗜鱼外瓶霉(exophiala pisciphila)促进玉米磷吸收的机制研究 [D]. 昆明:云南大学,2017.
XU Runbing. Effects of the dark septum endophytic fungus Exophiala pisciphila on phosphorus uptake in maize [D]. Kunming:Yunnan University,2017.
|
[17] |
HASELWANDTER K,RRAD D J. The significance of a root-fungus association in two Carex species of high-alpine plant communities[J]. Oecologia,1982,53(3):352−354.
|
[18] |
UPSON R,READ D J,NEWSHAM K K. Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes[J]. Mycorrhiza,2009,20(1):1−11. doi: 10.1007/s00572-009-0260-3
|
[19] |
BERTHELOT C,LEYVAL C,FOULONJ, et al. Plant growth promotion,metabolite production and metal tolerance of dark septate endophytes isolated from metal-pollutedpoplar phytomanagement sites[J]. FEMS Microbiology Ecology,2016,92(10):144−175. doi: 10.1093/femsec/fiw144
|
[20] |
TIENAHO J,KARONEN M,MUILU-MAKELA R, et al. Metabolic profiling of water-soluble compounds from the extracts of dark septate endophytic fungi (DSE) isolated from scots pine ( pinus sylvestris L.) seedlings using UPLC-Orbitr-ap-MS[J]. Molecules,2019,24(12):2330. doi: 10.3390/molecules24122330
|
[21] |
WANG S H,BI Y L,QUAN W Z, et al. Growth and metabolism of dark septate endophytes and their stimulatory effects on plant growth[J]. Fungal Biology,2022,126(10):674−686. doi: 10.1016/j.funbio.2022.08.006
|
[22] |
PELLEGRINI M,PAGNANI G,BERNARDI M, et al. Cell-free supernatants of plant growth-promoting bacteria:A review of their use as biostimulant and microbial biocotrol agents in sustainable agricullture[J]. Sustainability,2020,12(23):1−22.
|
[23] |
黄望启,杨赛奇,徐开杰,等. 农杆菌浸根对小麦苗期生理生化特性的影响[J]. 西北农业学报,2012,21(9):45−51.
HUANG Wangqi,YANG Saiqi,XU Kaijie, et al. The effect of physiologyical and biochemical characteristics of wheat seedling with Agrobacterium tumefaciens soaking rots[J]. Acta Agriculturae Boreali-occidentalis Sinica,2012,21(9):45−51.
|
[24] |
TINNA D,GARG N,SHARMA S, et al. Utilization of plant growth promoting rhizobacteria as root dipping of seedlings for improving bulb yield and curtailing mineral fertilizer use in onion under field conditions[J]. Scientia Horticulturae,2020,270:109432. doi: 10.1016/j.scienta.2020.109432
|
[25] |
陈保冬,于 萌,郝志鹏,等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报,2019,30(3):1035−1046.
CHEN Baodong,YU Meng,HAO Zhipeng, et al. Research progress in arbuscular mycorrhizal technology[J]. Chinese Journal of Applied Ecology,2019,30(3):1035−1046.
|
[26] |
毕银丽,王茁优,柯增鸣. 叶面涂抹DSE菌液对蛋白桑生长发育影响及其生态修复前景 [J]. 煤田地质与勘探,2023,51(2):187−194.
BI Yinli,WANG Zhuoyou,KE Zengming. Effect of foliar application of DSE fungal solution on growth of morus alba and its prospects of ecological restoration application [J]. Coal Geology & Exploration. 2023,51(2):187−194.
|
[27] |
SHADMANI L,JAMALI S,FATEMI A. Isolation,identification,and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation [J]. Brazilian Journal of Microbiology,2021,52(3):1097−1106.
|
[28] |
PHILLIPS J M,HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions British Mycological Society,1970,55(1):158−161. doi: 10.1016/S0007-1536(70)80110-3
|
[29] |
罗姗姗,曹 昀,纪欣圣. 水深对黑藻叶绿素含量和抗氧化酶活性的影响[J]. 生态学杂志,2019,38(1):221−228.
LUO Shanshan,CAO Yun,JI Xinsheng. Effects of water depth on chlorophyll content and antioxidant enzyme activity of Hydrilla verticillata[J]. Chinese Journal of Ecology,2019,38(1):221−228.
|
[30] |
温云杰,李桂花,黄金莉,等. 连续流动分析仪与自动凯氏定氮仪测定小麦秸秆全氮含量之比较 [J]. 中国土壤与肥料,2015(6):146−151.
WEN Yunjie,LI Guihua,HUANG Jinli, et al. Determination nitrogen in the Kjeldahl digests of plant samples by continuous flow analyzer in comparison with auto mated distillation-titration instrument [J]. Soils and Fertilizers Sciences in China,2015(6):146−151.
|
[31] |
何中声,陈佳嘉,朱 静,等. 戴云山南坡不同海拔森林土壤微生物功能多样性特征及影响因素[J]. 生态学报,2019,42(9):3504−3515.
HE Zhongsheng,CHEN Jiajia,ZHU Jing, et al. Characteristics of microbial functional diversity and its influencing factors of forest soils at different elevations on the southern slope of Daiyun Mountain[J]. Acta Ecologica Sinica,2019,42(9):3504−3515.
|
[32] |
肖 武,任 河,赵艳玲,等. 无人机遥感支持下的煤矸石山自燃监测与预警[J]. 煤炭科学技术,2023,51(2):412−421.
XIAO Wu,REN He,ZHAO Yanling, et al. Monitoring and early warning the spontaneous combustion of coal waste dumps supported by unmanned aerial vehicle remote sensing[J]. Coal Science and Technology,2023,51(2):412−421.
|
[33] |
WU F L,QU D H,TIAN W, et al. Transcriptome analysis for understanding the mechanism of dark septate endophyte S16 in promoting the growth and nitrate uptake of sweet cherry[J]. Journal of Integrative Agriculture,2021,20(7):1819−1831. doi: 10.1016/S2095-3119(20)63355-X
|
[34] |
YU T ,NASSUTH A,PETERSON R L. Characterization of the interaction between the dark septate fungus phialocephala fortinii and asparagus officinalis roots [J]. Canadian Journal of Microbiology,2001,47(8):741−753.
|
[35] |
CZABAN W,JAMTGARD S,NASHOLM T, et al. Direct acquisition of organic N by white clover even in the presence of inorganic N[J]. Plant and Soil,2016,407(1/2):91−107. doi: 10.1007/s11104-016-2896-z
|
[36] |
彭 炜,谭悠久,黄永春. GFP 标记的多粘芽孢杆菌1114在番茄根际的定殖[J]. 中国生物防治,2010,26(3):307−311.
PENG Wei,TAN Youjiu,HUANG Yongchun. Colonization of gfp tagged Paenibacillus polymyxa strain around tomato roots[J]. Chinese Journal of Biological Control,2010,26(3):307−311.
|
[37] |
王淑惠,毕银丽,李梦琪. 不同培养期深色有隔内生真菌链格孢菌对紫花苜蓿生长的影响[J]. 菌物学报,2021,40(10):2863−2873.
WANG Shuhui,BI Yinli,LI Mengqi. Effects of dark septate endophyte Alternaria sp. with different culture periods on growth of Medicago sativa[J]. Myc osystema,2021,40(10):2863−2873.
|
[38] |
应益山,杨丽婷,程建新,等. 不同生境对苦竹鞭根形态结构及其异速生长的影响[J]. 西北植物学报,2022,42(9):1583−1590.
YING Yishan,YANG Liting,CHENG Jianxin, et al. Effect of habitats on the morphological and structural characteristic of rhizome roots of Pleioblastus amarus and its allometric growth[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(9):1583−1590.
|
[39] |
郑爱珍,孟 鑫,韩 霜,等. 丛枝菌根真菌对水培番茄生长的影响[J]. 中国瓜菜,2020,33(11):48−51.
ZHENG Aizhen,MENG Xin,HAN Shuang, et al. Effect of arbuscular mycorrhizal fungi on the growth of hydroponic tomato[J]. China Cucurbits and Vegetables,2020,33(11):48−51.
|
[40] |
毕银丽,罗 睿,柯增鸣,等. 接菌对根土复合体抗剪拉作用机理及其矿山生态修复潜力[J]. 煤炭科学技术,2023,51(1):493−501.
BI Yinli,LUO Rui,KE Zengming, et al. Mechanisms of shear tension resistance of root-soil complexes by inoculated bacteria and potential for ecological restoration in mines[J]. Coal Science and Technology,2023,51(1):493−501.
|
[41] |
毕银丽,郭 晨,王 坤. 煤矿区复垦土壤的生物改良研究进展[J]. 煤炭科学技术,2020,48(4):52−59.
BI Yinli,GUO Chen,WANG Kun. Research progress of biological improvement of reclaimed soil in coal mining area[J]. Coal Science and Technology,2020,48(4):52−59.
|
[42] |
张延旭,毕银丽,王 瑾. 接种菌根对采煤沉陷区苜蓿生长及土壤改良影响研究[J]. 煤炭科学技术,2020,48(4):142−147.
ZHANG Yanxu,BI Yinli,WANG Jin. Research on effect of arbuscular mycorrhizal fungi on alfalfa growth and soil improvement in mining subsidence area[J]. Coal Science and Technology,2020,48(4):142−147.
|