KONG Xiangxi,TANG Yongzhi,LI Ping,et al. Thingking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area[J]. Coal Science and Technology,2022,50(12):26−35
. DOI: 10.13199/j.cnki.cst.mcq22-38Citation: |
KONG Xiangxi,TANG Yongzhi,LI Ping,et al. Thingking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area[J]. Coal Science and Technology,2022,50(12):26−35 . DOI: 10.13199/j.cnki.cst.mcq22-38 |
In order to solve the problems that restrict the efficient development of coalbed methane resources under the conditions of soft and low permeability outburst coal seams in Huainan Mining Area, such as complex coal seam structure, multi-source gas emission, rapid decline of drainage flow, high rock roadway and drilling costs, and low (ultra-low) concentration coalbed methane utilization rate, six key technologies suitable for the coordinated development mode of coal and coalbed methane under the condition of coal seam group mining in Huainan mining area are put forward, namely: coalbed methane extraction technology of ground level staged fracturing wells, shield rapid construction technology of coalbed methane extraction roadways, enhanced extraction technology of underground soft coalbed methane, coalbed methane extraction technology of pressure relief in ground mining area, the construction technology of "replacing roadways with holes", and cascade utilization technology of low concentration coalbed methane. The application of supporting key technologies shows that staged fracturing technology and refined drainage and production technology of roof horizontal wells in broken and soft coal seam have effectively improved the pre pumping production of coalbed methane; The full face hard rock roadheader in deep coal mine roadway greatly improves the roadway excavation efficiency, realizing the automation and less humanization of hard rock excavation; Sand adding of hydraulic fracturing and ultra-high hydraulic slotting have realized pressure relief and permeability enhancement in large areas underground coal mine; Type III and IV surface mining area wells can replace the roof high drainage roadway in the treatment of pressure relief gas in coal seam group mining, and reduce the coalbed methane drainage intensity of other measures; The technology of "replacing roadways with holes" has significantly improved the quality of successful directional drilling at middle and high levels in complex roof; Cascade utilization technology of low concentration coalbed methane has greatly reduced the emission of coalbed methane. The six key technologies have guaranteed the safe production in Huainan mining area, and comprehensively improved the output of coal and coalbed methane and the utilization level of coalbed methane. Six key technologies ensure the safe production in Huainan mining area, and comprehensively improved the output of coal and coalbed methane and the utilization level of coalbed methane. Finally, in view of the problems such as high operation cost, low production, small scope of hydraulic fracturing coal reservoir reconstruction technology for surface horizontal wells, and the risk of breakage of mining wells, and small scale of cascade utilization of ultra-low concentration coalbed methane, the development direction of deep CBM precise geological guidance, super large scale efficient reservoir volume transformation, pumping effect evaluation technology, stable and continuous pumping technology of surface wells in mining areas, underground large area intelligent hydraulic enhanced permeability technology, "one well with multiple uses" collaborative pumping CBM technology, and full concentration CBM comprehensive utilization technology are proposed.
[1] |
秦 勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513−2522. doi: 10.13225/j.cnki.jccs.dz20.0621
QIN Yong,WU Jianguang,LI Guozhang,et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society,2020,45(7):2513−2522. doi: 10.13225/j.cnki.jccs.dz20.0621
|
[2] |
张道勇,朱 杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.
ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
|
[3] |
张 群,葛春贵,李 伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159.
ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.
|
[4] |
杨陆武,崔玉环,王国玲. 影响中国煤层气产业发展的技术和非技术要素分析[J]. 煤炭学报,2021,46(8):2400−2411.
YANG Luwu,CUI Yuhuan,WANG Guoling. Analysis of technical and regulational aspects affecting China CBM progresses[J]. Journal of China Coal Society,2021,46(8):2400−2411.
|
[5] |
巫修平. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及机制研究[D]. 北京: 煤炭科学研究总院, 2017.
WU Xiuping. Research on control mechanism of fracture propagation of multi-stage hydraulic fracturing horizontal well in roof of broken soft and low permeable coal seam[D]. Beijing: China Coal Research Institute, 2017.
|
[6] |
贾建称,陈 晨,董 夔,等. 碎软低渗煤层顶板水平井分段压裂高效抽采煤层气技术研究[J]. 天然气地球科学,2017,28(12):1873−1881.
JIA Jiancheng,CHEN Chen,DONG Kui,et al. Research on the technology of high efficient to drainage CBM by multistage fracturing in horizontal well along the roof of broken soft and low permeability coal seam[J]. Natural Gas Geoscience,2017,28(12):1873−1881.
|
[7] |
安士凯,徐 翀,陈永春. 淮南矿区卸压煤层气井变形破坏特征研究[J]. 煤炭工程,2016,48(10):88−91. doi: 10.11799/ce201610028
AN Shikai,XU Chong,CHEN Yongchun. Deformation and destruction characteristics of releasedcoal-bed methane well in Huainan mine area[J]. Coal Engineering,2016,48(10):88−91. doi: 10.11799/ce201610028
|
[8] |
赵 干,廖斌琛. 淮南矿区煤层气开发利用现状及展望[J]. 中国煤层气,2007,4(4):12−15. doi: 10.3969/j.issn.1672-3074.2007.04.004
ZHAO Gan,LIAO Binchen. Current status and prospect of CMM development and utilization in Huainan Coal Mining Area[J]. China Coalbed Methane,2007,4(4):12−15. doi: 10.3969/j.issn.1672-3074.2007.04.004
|
[9] |
申宝宏,刘见中,雷 毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术,2015,43(2):1−4.
SHEN Baohong,LIU Jianzhong,LEI Yi. Present status and prospects of coalbed methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology,2015,43(2):1−4.
|
[10] |
张芬娜,张 晧,綦耀光,等. 共采技术现状与在煤系气共采中的适应性分析[J]. 煤炭学报,2017,42(S1):203−208.
ZHANG Fenna,ZHANG Hao,QI Yaoguang,et al. Adaptability analysis and co-exploration technology status summary in coal-bearing gas[J]. Journal of China Coal Society,2017,42(S1):203−208.
|
[11] |
许耀波,朱玉双,张培河. 紧邻碎软煤层的顶板岩层水平井开发煤层气技术[J]. 天然气工业,2018,38(9):70−75. doi: 10.3787/j.issn.1000-0976.2018.09.009
XU Yaobo,ZHU Yushuang,ZHANG Peihe. Application of CBM horizontal well development technology in the roof strata close to broken-soft coal seams[J]. Natural Gas Industry,2018,38(9):70−75. doi: 10.3787/j.issn.1000-0976.2018.09.009
|
[12] |
方良才,李贵红,李丹丹,等. 淮北芦岭煤矿煤层顶板水平井煤层气抽采效果分析[J]. 煤田地质与勘探,2020,48(6):155−160, 169. doi: 10.3969/j.issn.1001-1986.2020.06.021
FANG Liangcai,LI Guihong,LI Dandan,et al. Analysis on the CBM extraction effect of the horizontal wells in the coal seam roof in Luling Coal Mine in Huaibei[J]. Coal Geology and Exploration,2020,48(6):155−160, 169. doi: 10.3969/j.issn.1001-1986.2020.06.021
|
[13] |
李彬刚. 淮北芦岭井田煤层气地面抽采技术研究[J]. 煤炭工程,2017,49(7):90−92. doi: 10.11799/ce201707027
LIN Bingang. Research on surface CBM drainage technology in Luling coal field of Huaibei[J]. Coal Engineering,2017,49(7):90−92. doi: 10.11799/ce201707027
|
[14] |
唐永志. 淮南矿区煤炭深部开采技术问题与对策[J]. 煤炭科学技术,2017,45(8):19−24.
TANG Yongzhi. Technical problem and countermeasures to deep coal mining in Huainan Mining Area[J]. Coal Science and Technology,2017,45(8):19−24.
|
[15] |
程 桦,唐 彬,唐永志,等. 深井巷道全断面硬岩掘进机及其快速施工关键技术[J]. 煤炭学报,2020,45(9):3314−3324. doi: 10.13225/j.cnki.jccs.2019.0927
CHENG Hua,TANG Bin,TANG Yongzhi,et al. Full face tunnel boring machine for deep-buried roadways and its keyrapid excavation technologies[J]. Journal of China Coal Society,2020,45(9):3314−3324. doi: 10.13225/j.cnki.jccs.2019.0927
|
[16] |
陈 建,贾秉义,董瑞刚,等. 煤矿井下水力压裂加骨料增透瓦斯抽采技术应用[J]. 煤炭工程,2021,53(2):90−94.
CHEN Jian,JIA Bingyi,DONG Ruigang,et al. Application of hydraulic fracturing and aggregate injecting for permeability enhancement in underground coal mine gas extraction[J]. Coal Engineering,2021,53(2):90−94.
|
[17] |
曹建军. 超高压水力割缝卸压抽采区域防突技术应用研究[J]. 煤炭科学技术,2020,48(6):88−94.
CAO Jianjun. Application research on regional outburst prevention technology of ultra - high pressure hydraulic slotpressure in relief drainage area[J]. Coal Science and Technology,2020,48(6):88−94.
|
[18] |
张永将,黄振飞,季 飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术,2021,49(4):133−141.
ZHANG Yongjiang,HUANG Zhenfei,JI Fei. Prevention and control technology of coal-rock and gas dynamic disaster based on water jet slotting pressure relief[J]. Coal Science and Technology,2021,49(4):133−141.
|
[19] |
张永将,陆占金. 超高压水力割缝煤层增透成套装置研制及应用[J]. 煤炭科学技术,2020,48(10):97−104.
ZHANG Yongjiang,LU Zhanjin. Development and application of complete set of anti-reflection equipment for ultra-high pressure hydraulic seam cutting[J]. Coal Science and Technology,2020,48(10):97−104.
|
[20] |
甘林堂. 地面钻井抽采被保护层采动区卸压瓦斯技术研究[J]. 煤炭科学技术,2019,47(11):110−115.
GAN Lintang. Study on pressure relief gas draiage technology in mining area of ground drilling in protected layer[J]. Coal Science and Technology,2019,47(11):110−115.
|
[21] |
孙东玲,孙海涛. 煤矿采动区地面井瓦斯抽采技术及其应用前景分析[J]. 煤炭科学技术,2014,42(6):49−52,39.
SUN Dongling,SUN Haitao. Application prospect analysis on gas drainage technology of surface well in mining area[J]. Coal Science andTechnology,2014,42(6):49−52,39.
|
[22] |
孙海涛. 成庄煤矿采空区煤层气地面井抽采试验[J]. 矿业安全与环保,2014,41(1):1−3,19. doi: 10.3969/j.issn.1008-4495.2014.01.001
SUN Haitao. Test of gas drainage from gob area by surface wells in Chengzhuang Coal Mine[J]. Mining Safety and Environmental Protection,2014,41(1):1−3,19. doi: 10.3969/j.issn.1008-4495.2014.01.001
|
[23] |
陈 建,李 朝,张臻豪. 淮南矿业集团防治煤与瓦斯突出技术及管理经验[J]. 中国安全生产科学技术,2014,10(S1):147−152.
CHEN Jian,LI Chao,ZHANG Zhenhao. Huainan mining group, prevention and cure of coal and gas outbursttechnology and management experience[J]. Journal of Safety Science and Technology,2014,10(S1):147−152.
|
[24] |
张臻豪, 刘 涛. 深厚表土层高地应力矿井地面钻井抽采瓦斯技术[C]//第三届全国煤矿机械安全装备技术发展高层论坛暨新产品技术交流会论文集, 徐州: 中国矿业大学出版社, 2012: 305−309.
|
[25] |
童 碧,许 超,刘 飞,等. 淮南矿区瓦斯抽采中以孔代巷技术研究与工程实践[J]. 煤炭科学技术,2018,46(4):33−39.
TONG Bi,XU Chao,LIU Fei,et al. Technology research on borehole in place of roadway and its engineering practice in gas drainage of Huainan Mining Area[J]. Coal Science and Technology,2018,46(4):33−39.
|
[26] |
童 碧,许 超,王 鲜,等. 淮南矿区复杂顶板高位定向孔复合排渣钻进技术[J]. 煤炭科学技术,2020,48(S1):140−143.
TONG Bi,XU Chao,WANG Xian,et al. ompound slag removal technology of high directional drilling for complex roof in Huainan Mining Area[J]. Coal Science and Technology,2020,48(S1):140−143.
|
[27] |
李泉新,石智军,田宏亮,等. 我国煤矿区钻探技术装备研究进展[J]. 煤田地质与勘探,2019,47(2):1−6,12.
LI Quanxin,SHI Zhijun,TIAN Hongliang,et al. Progress in the research on drilling technology and equipment in coal mining areas of China[J]. Coal Geology amp; Exploration,2019,47(2):1−6,12.
|
[28] |
徐凤银, 闫 霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[JL]. 煤田地质与勘探, 2022, 50(3): 1-14.
XU Fengyin, YAN Xia, LIN Zhenpan, et al. Research progress and development direction of key technologies for efficient development of coalbed methane in China[JL]. Coal Geology and Exploration, 2022, 50(3): 1-14.
|
[29] |
杨陆武. 难动用煤层气资源的高产开采技术研究—论煤层气资源的特殊性及其开发工程中的“窗−尾效应”[J]. 煤炭学报,2016,41(1):32−39.
YANG Luwu. Produce high rate gas from poor CBM reservoir-Study on CBM resource types and“Window−Longtail Effects”of reservoir during delivering gas[J]. Journal of China Coal Society,2016,41(1):32−39.
|
[30] |
孙景来. 煤与煤层气协调开发机制研究[J]. 煤炭科学技术,2014,42(10):62−65,70.
SUN Jinglai. Study on coordinative development mechanism of coal and coalbed methane[J]. Coal Science and Technology,2014,42(10):62−65,70.
|
[31] |
熊云威. 煤矿区低浓度煤层气梯级利用技术研究进展[J]. 矿业安全与环保,2018,45(4):121−124.
XIONG Yunwei. Research progress on the cascade utilization technology of low concentration cbm in coal mine area[J]. Mining Safety and Environmental Protection,2018,45(4):121−124.
|