Advance Search
Study and Application of Gas Content to Prediction of Coal and Gas Outburst[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).
Citation: Study and Application of Gas Content to Prediction of Coal and Gas Outburst[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).

Study and Application of Gas Content to Prediction of Coal and Gas Outburst

More Information
  • Available Online: April 02, 2023
  • Published Date: March 24, 2011
  • According to the limitation of the shallow predicted depth, low fficiency and others existed in the present coal and gas outburst prediction method in Chi na, in combination of the special deposit conditions and the physical mechanics properties of the outburst seam in China, a completed set of the new technology and eq uipment was researched and developed based on the gas content to predict the coal and gas outburst. The new technology and equipment would be mainly including th e technology, equipment and technique to directly and rapidly measure the seam gas content, the software program for the 3D numerical simulation of coal and gas out burst, the deep borehole drilling and scheduled sampling technology and equipment suitable for medium soft outburst seam, critical vale determined method of the gas content index and others.With the researches, the depth of the outburst prediction for the coal mining face would be increased from the present less than 10 m to 65 m and the prediction time could be reduced by 50%.The No.13 seam in Guqiao Mine of Huainan Coal Mining Group as a case could show the critical vale determined proc edure and method of the gas content index.The critical vale of the gas content index for No.13 seam in Guqiao Mine preliminarily was determined as 8.00 m3/t.
  • Related Articles

    [1]FAN Liyong, ZHOU Guoxiao, YANG Zhaobiao, WANG Huaichang, LU Benju, ZHANG Baoxin, CHEN Yuhang, LI Cunlei, WANG Yanqing, GU Junyu. Geological control of differential enrichment of deep coalbed methane in the Ordos Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 203-215. DOI: 10.12438/cst.2024-1144
    [2]WU Jianhong, PAN Junfeng, GAO Jiaming, YAN Yaodong, MA Hongyuan. Research on prediction of the height of water-conducting fracture zone in Huanglong Jurassic Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 231-241. DOI: 10.13199/j.cnki.cst.2023-0151
    [3]ZENG Ling, SUN Xiaoguang, CUI Shaohua, SUI Jinyang. Controlling effects of structural-hydrogeological conditions on coalbedmethane accumulation in Xishan Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (9).
    [4]JIA Bingyi, JIN Xianglan. Analysis of gas bearing property difference of Jurassic coal between Southern and Northern Ordos Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4).
    [5]Li Jing Yao Zheng Chen Limin Jiang Allin Yang Chengwei Cao Daiyong, . Study on unconventional gas coexisted law of Jurassic coal measures in Muri Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (7).
    [6]Shao Longyi Lyu Jinggao Zhang Wenlong Wang Weichao Li Yonghong Wen Huaijun, . Sedimentary environments and coal accumulation aw of middle Jurassic in Duosuogongma Mining Area of Qinghai[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (1).
    [7]Jin Xianglan. Geological significances and analysis of gas potential for Jurassic Coal Seam in Ordos Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (7).
    [8]JIN Xiang-lan. Enrichment mechanism and mode of Jurassic coalbed methane in Ordos Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (2).
    [9]LI Yong TANG Da-zhen XU Hao MENG Shang-zhi LIU Yi-nan ZHANG Wen-zhong CHEN Yue, . Characteristics of Structural Controlled Coallbed Methane in East Margin of Ordos Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (6).
    [10]ZHAO Fu-ping. Analysis on Fault Structure Characteristic in Xindian Mining Area of Guiyang Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (3).
  • Cited by

    Periodical cited type(19)

    1. 张传伟,张刚强,路正雄,李林岳,何正伟,龚凌霄,黄骏峰. 极薄煤层破碎顶板条件下液压支架带压移架残余支撑力决策方法. 工矿自动化. 2025(03): 22-31+38 .
    2. 问永忠,贾澎涛,杨鸿宇,张龙刚. 基于TCN-GRU-DAB模型的工作面矿压智能预测研究. 中国煤炭. 2025(02): 102-112 .
    3. 席国军,余智秘,李亮,李小菲,丁自伟,刘江,张超凡. 胡家河煤矿综放工作面矿压显现规律预测及主控因素研究. 工矿自动化. 2024(01): 138-146 .
    4. 余琼芳,杨鹏飞,唐高峰. 基于LSTM-Informer模型的液压支架压力时空多步长预测. 工矿自动化. 2024(06): 30-35 .
    5. 何志铧,熊祖强. 基于Informer神经网络的工作面矿压预测研究. 矿业研究与开发. 2024(07): 142-148 .
    6. 乔永航,杨文明,陈湘源. 基于Bert-base模型深度学习的液压支架动作分类研究. 采矿技术. 2024(04): 286-290 .
    7. 巩师鑫. 数据驱动的深井超长工作面支架载荷区域特征分析与分区预测. 煤炭科学技术. 2024(S1): 1-12 . 本站查看
    8. 胡晓东,刘俊仪,王天宇,周福建,卢旭涛,易普康,陈超. 物理—数据双驱动的压裂压力实时预测方法. 石油实验地质. 2024(06): 1323-1335 .
    9. 朱宇伟,王朋飞,王慧娴,牛强强,辛亮. 基于经验模态分解线性模型的矿压预测. 煤炭科学技术. 2024(11): 223-232 . 本站查看
    10. 康静,姚春玲. Prophet-VAR组合优化模型在高值卷烟销量预测中的应用. 中国烟草学报. 2023(01): 127-134 .
    11. 李振华,徐杰,王文强,李国盛,杜锋. 基于Optuna-LSTM的矿压预测方法研究. 矿业研究与开发. 2023(03): 98-102 .
    12. 卢国志,胡斐,李鑫,姚春卉. 液压支架实时压力数据自动提取与动态分析方法研究. 煤炭工程. 2023(03): 120-126 .
    13. 冯银辉,宋阳,李务晋,吴雨欣,秦泽宇. 基于支架数据优化的工作面矿压预测模型研究. 煤炭工程. 2023(06): 101-107 .
    14. 李泽西. 基于可变时序移位Transformer-LSTM的集成学习矿压预测方法. 工矿自动化. 2023(07): 92-98 .
    15. 古瑶,解海军,周子鹏,李璐. 基于Attention机制的CNN-BiLSTM瞬变电磁实时反演方法. 煤田地质与勘探. 2023(10): 134-143 .
    16. 罗香玉,刘俊豹,罗颖骁,解盘石,伍永平. 基于时空关联分析的采煤工作面顶板压力预测方法. 工矿自动化. 2022(01): 85-90+97 .
    17. 杨胜利 ,王家臣 ,李明 . 煤矿采场围岩智能控制技术路径与设想. 矿业科学学报. 2022(04): 403-416 .
    18. 冀汶莉,田忠,张丁丁,欧阳一博. 基于遗传算法-深度神经网络的分布式光纤监测工作面矿压预测. 科学技术与工程. 2022(24): 10485-10492 .
    19. 刘伟,李国清,侯杰,王浩,陈连韫,范纯超. 基于大数据分析的矿山备件采购预测模型. 金属矿山. 2022(11): 179-185 .

    Other cited types(17)

Catalog

    Article views PDF downloads Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return