Advance Search
CHEN Kai, SUN Linhua. Analysis of chemical composition and control factors of groundwater in Renlou Coal Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).
Citation: CHEN Kai, SUN Linhua. Analysis of chemical composition and control factors of groundwater in Renlou Coal Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).

Analysis of chemical composition and control factors of groundwater in Renlou Coal Mine

More Information
  • Available Online: April 02, 2023
  • Published Date: October 24, 2019
  • The difference of groundwater chemical information in different aquifers is the key to water source identification.In order to investigate the chemical composition and control factors of groundwater in Renlou Coal Mine,the major ion concentrations of groundwater samples were collected from four aquifers have been analyzed by ion ratios and mathematical statistical methods.The results indicate that the anions in the groundwater samples in the mining area are mainly Cl-and width=64,height=13,dpi=110 cation is mainly K++Na+,the main hydrochemical type is Na-Cl,but the major ion concentrations of water samples in different aquifers are different,which means the chemical control factors of groundwater in each aquifer are distinctive.Based on the ion ratio analysis,the major ion concentrations of the groundwater are controlled by the weathering of silicate and dissolution of the evaporation (halite),carbonate and sulfate minerals,with different extent ion exchange.Factor analysis indicates that the Quaternary aquifer is in the relatively open environment,the Coal bearing sandstone aquifer is dominated by silicate weathering and dissolution of evaporation minerals,and the Carboniferous limestone aquifer as well as the Ordovician limestone aquifer are dominated by dissolution of carbonate and evaporite minerals,and the analysis results are further confirmed by cluster analysis.
  • Related Articles

    [1]CHENG Yuanping, ZHOU Hongxing. Research progress of sensitive index and critical values for coal and gas outburst prediction[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 146-154. DOI: 10.13199/j.cnki.cst.2021.01.009
    [2]JU Wei, JIANG Bo, QIN Yong, WU Caifang, LAN Fengjuan, LI Ming, XU Haoran, WANG Shengyu. Distribution of in-situ stress and prediction of critical depth for deep coalbed methane in Enhong Block of eastern Yunnan region[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(2).
    [3]LEI Hongyan. Experimental study on rapid determination of critical value of drilling cutting gas desorption index K1[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (8).
    [4]HU Haiyang, CHEN Jie. Determination and application of critical desorption pressure in overpressure seam of Western Guizhou[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (1).
    [5]DU Yi, SANG Shuxun, WANG Wenfeng. Study and review on geochemical effect of coal and rock injected with super-critical CO 2[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (3).
    [6]Xu Changfu Fan Shaowu Yao Haifei Zhang Qun Zheng Zhongya Wu Haijun, . Experiment study on moisture affected to critical temperature of coal spontaneous combustion[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (7).
    [7]KONG Sheng-Li CHENG Long-biao WANG Hai-feng ZHOU Hong-xing, . Determination and Application on Critical Value of Drilling Cuttings Gas Desorption Indices[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (8).
    [8]CHEN Liang LIU Ming-ju WU Bing WANG Yin-kai WANG Chao, . Determination on Critical Value of Gas Content Based on Gas Adsorption and Desorption Experiment[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (7).
    [9]Study on Softening Critical Load of Surrounding Rock in Deep Mine Roadway Under Different Depth Conditions[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (8).
    [10]Study on Measurement and Calculation of Critical Surface Tension of Wetting Coal with Water[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (4).
  • Cited by

    Periodical cited type(18)

    1. 侯建军. 基于AHP与GIS的煤层顶板突水危险性评价. 能源与环保. 2024(02): 17-22 .
    2. 汪伟民,郝红俊,翟晓荣,程龙艺,汪蒙,庞瑶. 基于改进AHP-独立性权系数法的地质构造复杂程度定量评价. 煤炭技术. 2024(04): 119-124 .
    3. 孙中博,赵毅鑫,任建东. 废弃矿井地下空间再利用根源因素识别及评价模型构建. 中国矿业大学学报. 2024(03): 585-599+612 .
    4. 张丽维,侯恩科,段中会,付德亮,贺丹. 基于AHP熵权TOPSIS模型的矸石充填方案评价和优选研究. 中国煤炭. 2024(05): 120-126 .
    5. 汪伟民,张红梅,吴基文,顾承串. 煤矿待采孤立块段地质构造复杂程度评价. 中国煤炭地质. 2024(06): 1-6+17 .
    6. 杜鑫,武强,曾一凡,庞振忠,周子博,涂坤. 基于分形理论的隔水性指数法对古风化壳隔水效果的评价. 煤炭工程. 2024(07): 136-142 .
    7. 王靖怡,刘埔,陈维孝,彭纪超,罗颖,路豪,李博. 黔西南州典型岩溶区地下河水质特征分析及综合评价. 科学技术与工程. 2024(29): 12797-12808 .
    8. 闫涛滔,邓志宇,吴鹏,高国森,常锁亮,付鑫宇,孟艳军,刘彦飞. 鄂尔多斯盆地东缘临兴东区杨家坡区块煤层气井产能特征及主控因素. 现代地质. 2024(06): 1545-1556 .
    9. 薛喜成,吕自豪,倚江星,霍高普. 基于IGA-BP的矿井构造复杂程度评价. 煤矿安全. 2023(03): 193-203 .
    10. 王淑芳,焦翠翠,胡伟,孟广文,周俊. 中国境外经贸合作区本地嵌入程度及影响因素——以东南亚地区为例. 经济地理. 2023(04): 96-104 .
    11. 郭强,成文举,杨廷军,王印,唐汝倩,张呈伟,徐国梁,尹会永. 基于博弈论组合赋权的断层定量评价模型及应用. 煤矿安全. 2023(06): 199-206 .
    12. 王海涛,翟仕奇,孙志丹,王涛,高翔. 基于AHP熵权-物元分析法的虚拟维修考核评价. 兵工自动化. 2023(07): 83-90 .
    13. 陈鸣,李军祥,屈德强,李望月. 基于K-means聚类算法的城市应急物流设施规划——以长春市某阶段蔬菜投放数据为例. 物流科技. 2023(17): 57-60 .
    14. 赖冬梅,唐秋华. 考虑拆卸序列的机器人拆卸线平衡优化. 组合机床与自动化加工技术. 2023(09): 1-6 .
    15. 崔俊超,平宇,郝建卿,任君豪,孟建勇,王心义. 基于区间变权和未知测度理论的煤层底板突水危险性评价. 地下水. 2023(05): 1-6+25 .
    16. 王洋,胡书婷,张纪凤. 海关监管视角下口岸贸易便利化测评体系的建立与应用研究. 对外经贸. 2023(11): 28-32+37 .
    17. 王景春,王屹. 基于未确知测度的艰险隧道施工物资配置水平评估. 中国安全生产科学技术. 2023(11): 150-156 .
    18. 王自国,朱利岗,王安民,曹代勇,宁树正,宋忠亮,郭强,刘悦. 蒋庄煤矿北十采区3号煤层构造复杂程度评价. 中国煤炭地质. 2023(11): 31-38+30 .

    Other cited types(17)

Catalog

    Article views (388) PDF downloads (300) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return