Advance Search
Issue 2
Feb.  2019
Turn off MathJax
Article Contents
CAO Minyuan, SUN Xueliang, YANG Lei, LIU Yonghong. Study on rock burst risk assessment of fully-mechanized top coal caving mining face in steep coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (2).
Citation: CAO Minyuan, SUN Xueliang, YANG Lei, LIU Yonghong. Study on rock burst risk assessment of fully-mechanized top coal caving mining face in steep coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (2).

Study on rock burst risk assessment of fully-mechanized top coal caving mining face in steep coal seam

More Information
  • Available Online: April 02, 2023
  • Published Date: February 24, 2019
  • In order to improve the accuracy of evaluation index and applicability of evaluation method for rock burst risk of fully-mechanized top coal caving mining face in steep coal seam, the stress distribution in the working face when passing through coal pillar area and superposition effect of excavation face and mining face were carried out by numerical simulation and theoretical calculation method.The calculation system of dynamic weight evaluation method in steep coal seam was formed. This paper determined and graded the risk assessment index for rock burst in steep coal seam, and applied the dynamic weight evaluation method to rock burst risk assessment in +495 m level working face.The results show that: the main influencing factors of rock burst in fully mechanized top coal caving mining face of Jian’gou Coal Mine are coal pillar and the superposition of stress disturbance of excavation face and mining face.The risk grade of rock burst is II in +495 m level fully-mechanized top coal caving mining face. It had weak risk of rock burst, and divided into three dangerous areas: 830~1 000 m strike of working face,370~530 m strike of working face,50 m range before and after upper layer’ stopping mining line.The field test showed that the dynamic weight method can effectively realize the risk assessment of rock burst in steeply inclined coal seam.
  • Cited by

    Periodical cited type(23)

    1. 郑斌,钱兆明,贾明滔,李邵东. 推覆构造条件下多种因素不同工况边坡稳定性研究. 中国矿业. 2025(01): 164-173 .
    2. 李营作. 先锋露天煤矿软岩边坡稳定性分析及控制方案设计. 露天采矿技术. 2024(02): 102-105 .
    3. 李美军. 新鑫露天煤矿边坡稳定性分析及建议. 山东煤炭科技. 2024(09): 164-168 .
    4. 王振伟,成智强,夏宇飞. 基于FLAC3D不同含水工况下软岩边坡蠕变变形分析. 北方工业大学学报. 2024(05): 49-56 .
    5. 屈晓明. 考虑参数敏感性的软弱基底排土场边坡稳定性建模分析. 矿产勘查. 2024(S2): 308-312 .
    6. 王志修,秦秀山. 贯穿断层及隐伏巷道对某露天边坡稳定性影响数值模拟分析. 有色金属(矿山部分). 2023(01): 62-67 .
    7. 李元浩,王振伟,韦永豪,郭海棣,林令鑫. 基于双向流固耦合的顺倾岩质边坡变形机理研究. 露天采矿技术. 2023(02): 61-64 .
    8. 吕承贤,张东华. 石头梅一号露天煤矿顺层边坡稳定性评价及治理措施. 露天采矿技术. 2023(02): 46-49 .
    9. 郭海建,成功. 基于三维数值模拟的黑山露天矿边坡形态优化. 露天采矿技术. 2023(02): 42-45+49 .
    10. 张禹,刘宇,杨洋,杨国华,吕文伟,李广贺. 基于形态与支挡效应的露天矿到界边坡形态优化. 煤炭科学技术. 2023(04): 66-71 . 本站查看
    11. 屈晓明. 基于RBF神经网络的露天采石场边坡稳定性数值模拟. 水力发电. 2023(06): 34-38 .
    12. 夏宇飞,王振伟,李元浩,郭海棣,黄科伟. 别斯库都克露天煤矿南帮顺层边坡稳定性分析. 露天采矿技术. 2023(03): 78-81 .
    13. 张军文. 软土边坡开挖变形特征与临界破坏范围数值模拟. 能源与节能. 2023(07): 156-160 .
    14. 李文尧,黄科伟,李营作,姜海涛,韦永豪. 顺倾多弱层复合边坡稳定性分析及参数优化. 露天采矿技术. 2023(04): 14-16+22 .
    15. 黄亚军,景明,吕志强,徐啸川. 考虑软弱夹层蠕变特性的某矿山边坡稳定性研究. 有色金属(矿山部分). 2023(06): 94-101+127 .
    16. 贺云,李爱兵,虎万杰. 含软弱夹层露采边坡稳定性分析与治理方案研究. 采矿技术. 2022(01): 54-57+61 .
    17. Karimov Nodirbek. 复合顺倾弱层边坡变形破坏机理研究. 煤炭科技. 2022(01): 64-69 .
    18. 李广贺,王东,曹兰柱,杨国华,魏宁. 露天煤矿顺倾软岩到界边坡空间形态优化. 安全与环境学报. 2022(02): 673-679 .
    19. 王振伟,李斌,王智涛,董黎明,韦永豪,李营作. 伊敏露天矿弱层与正断层复合作用下顺倾边坡变形规律. 露天采矿技术. 2022(05): 24-27 .
    20. 袁飞虎,朱显峰,陈德军,向小东,李伟. 多断层对露天矿高陡边坡稳定性的影响研究. 现代矿业. 2022(11): 82-88 .
    21. 肖学沛,蒋锐. 某高速公路堑坡滑坡变形机制与稳定性分析. 地质灾害与环境保护. 2021(01): 42-48 .
    22. 毛正君,毕银丽,李成,陈建平,孙魁,张瑾鸽,连海波,刘伟. 渭北石灰岩露天采区高陡边坡破坏模式及形态优化研究. 西北地质. 2021(04): 211-226 .
    23. 刘月亭,吕文伟,张禹. 黑山露天矿底帮边坡留煤柱设计分析. 露天采矿技术. 2021(06): 93-95+99 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return