Advance Search
ZHANG Peng, ZHU Xuejun, SUN Wenbin, YANG Hui, YANG Fan. Study on mechanism of delayed water inrush caused by mining-induced filling fault activation[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(3): 136-143.
Citation: ZHANG Peng, ZHU Xuejun, SUN Wenbin, YANG Hui, YANG Fan. Study on mechanism of delayed water inrush caused by mining-induced filling fault activation[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(3): 136-143.

Study on mechanism of delayed water inrush caused by mining-induced filling fault activation

Funds: 

National Natural Science Foundation of China (51974172); China Postdoctoral Science Foundation (2020T130386); Shandong Provincial Natural Science Foundation General Support Project (ZR2019MEE004)

More Information
  • Available Online: April 02, 2023
  • Published Date: March 24, 2022
  • Structural disasters and water inrush have always been the focus of coal mine safety. Existing research lacks consideration of the buffering effect of fault zones and the influence of internal structural characteristics on the evolution of the structure itself. To solve this problem, this article started with the internal factors of the structure, based on the rock mass limit equilibrium theory on the floor. The limit water pressure of the aquifer was deduced, the mechanical model of mining stress under the influence of faults was established, and the mechanical criterion of fault activation under the influence of mining was obtained. According to the mechanical criterion of fault activation, the internal fracture propagation of the fault under the action of confined water was obtained. The evolution characteristics of the water inrush channels was formed by the expansion and evolution of the internal fractures of the lower faults. At the same time, it is preliminarily proposed that the inhomogeneous force of the fault filling causes the unbalanced internal force of the fault, which leads to the lag in the connection of the water inrush channels and the delayed water inrush from the floor. The RFPA2D-FLOW two-dimensional numerical simulation software was used to simulate the process of floor fault activation and the final formation of hysteresis water inrush. Based on theoretical analysis and numerical simulation, the characteristics of floor fault activation and delayed water inrush induced by mining have been deeply studied, and the mechanisms of induced fault activation and delayed water inrush under the influence of mining has been obtained. The results show that when the working face passes through the fault, when the stress limit equilibrium state of the surrounding rock mass near the fault is broken, it is easy to promote the activation of the fault and induce water inrush disaster from the floor. At the same time, the unevenness of the fault filling and its buffering effect make water inrush is lagging behind. This water inrush mechanism provides a good reference for the prevention and control of water hazards in working faces where there is a risk of fault activation and floor lagging water inrush accidents, and it also has certain guiding significance for the retention of waterproof coal pillars.

  • Related Articles

    [1]ZHANG Xiaoyu, LI Bobo, LI Jianhua, JIA Lidan, DING Yunna, SONG Haosheng. Anisotropic permeability model considering gas and water adsorption and stress[J]. COAL SCIENCE AND TECHNOLOGY. DOI: 10.12438/cst.2023-1943
    [2]LI Huiting, CHANG Suoliang, ZHANG Sheng, LIU Bo, ZHAO Xing, YU Pan. Evaluation of coal seam roof water-bearing risk area via anisotropic high-resolution seismic processing[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 192-200. DOI: 10.12438/cst.2023-0376
    [3]LI Zhen, WU Guanyang, SI Shangjin, LIU Guangxu, LI Mingming, ZHANG Chengxiang, XU Rongchao. Differences between reverse and normal shear in failure characteristics of layered rocks[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(7): 37-47. DOI: 10.12438/cst.2024-0222
    [4]ZHU Chuanqi, WANG Lei, CHEN Lipeng, ZHANG Yu, WANG Ancheng. Wave velocity evolution and fracture distribution of soft coal under uniaxial compression[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 288-301. DOI: 10.12438/cst.2023-1388
    [5]CHEN Lichao, WANG Shengwei, ZHANG Diankun. Experimental investigation on fracture behavior of lignite and its fracturing significance:taking Shengli Coalfield as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 63-71. DOI: 10.13199/j.cnki.cst.2021-1313
    [7]LI Qin, ZHAO Bin, MA Suibo. Study on characteristics of seismic wave velocity response in orthotropic fractured coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6).
    [8]LIN Baiquan, SONG Haoran, YANG Wei, ZHAO Yang, ZHA Wei. Study on effective gas drainage area based on anisotropic coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6).
    [9]Guo Xiaojie Huan Xuan Gong Weidong Zhang Yugui, . Study on coal complex resistivity anisotropy and characteristics of frequency response[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4).
    [10]Study on Coal Conductive Properties of Different Coal Structure[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (7).
  • Cited by

    Periodical cited type(2)

    1. 李贵山,于振锋,杨晋东,宋新亚,郭琛. 沁水盆地郑庄区块煤层气水平井钻井体系优化. 煤炭科学技术. 2023(04): 118-126 . 本站查看
    2. 刘一楠,吴翔,李勇,徐立富. 古交矿区太原组煤层气开发地质特征及产能优化. 煤炭科学技术. 2022(08): 125-132 . 本站查看

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return