Advance Search
ZHANG Zhong-wen. Coordinated Mining Technology of Contiguous Ultra Thick Seams in Mine with Annual Production over 10 Million Tons[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (11).
Citation: ZHANG Zhong-wen. Coordinated Mining Technology of Contiguous Ultra Thick Seams in Mine with Annual Production over 10 Million Tons[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (11).

Coordinated Mining Technology of Contiguous Ultra Thick Seams in Mine with Annual Production over 10 Million Tons

More Information
  • Available Online: April 02, 2023
  • Published Date: November 24, 2013
  • In order to realize the coordinated mining in contiguous ultra thick seams, taking No. 4 and No.9 seams in Pingshuo Mining Area as the study objects, th e theoretical analysis, numerical simulation and the site observation method were applied to determine the top coal caving parameters of the coal mining face, gateway layout mode, gateway support mode, sectional coal pillar size and terminal mining line location. The results showed that the fully-mechanized top coal caving mining fac e in No.9 seam with one cutting and one caving, sectional and twice sequence top coal caving could improve the coal mining recovery rate by 2.1%. Based on the enh anced gateway support of the coal mining face in No. 9 seam, an internal and external dislocated combined gateway layout mode applied could effectively prevent the C oal wall spaling and roof falling accident occurred. When the sectional coal pillar size of the coal mining face in No.4 seam was not less than17 m and the terminal min ing line had a distance of 50 m to the mine main roadway, thus the stability of the mine roadway in No.4 seam and the water bunker in No. 9 seam could be effectively ensured.
  • Related Articles

    [1]CUI Feng, FENG Ganggui, JIA Chong, ZHANG Suilin, SUN Jingxuan. Study on reasonable advancing speed of fully-mechanized top-coal caving face in mining contugous  extra-thick coal seams in rockburst mine[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(7): 287-297. DOI: 10.13199/j.cnki.cst.2022-0729
    [2]MENG Xiangjun, LI Mingzhong, SUN Jishuang, LI Shoubin. Complete sets of equipment and key technologies for intelligent fully-mechanized mining of ten-million tonnage level mine[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7).
    [3]ZHANG Dongfang. Discovery on fully mechanized mining equipment nationalization ofmine with annual production over 10 million tons[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2).
    [4]Wang Hongsheng Zhang Hongwei Chen Chao Zhu Zhijie, . Study on mine strata behavior law of fully-mechanized top coal caving mining in contiguous coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (11).
    [5]Pang Yihui Liu Xinhua Ma Ying, . Key technologies of fully- mechanized caving intelligent mining equipment in ten million tons of mines group[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (8).
    [6]YuLei Yan Shaohong, . Study on roof movement form and mine strata pressure law of fully-mechanized top coal caving mining in ultra thick seam[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (8).
    [7]LU Yan DUAN Xian-jun WANG xiao, . Study on Fully-Mechanized Caving Technique Parameters in Contiguous Seams and Lower Thick Seam by Simultaneous Mining[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (4).
    [8]WANG Zhen-jun ZHANG Zhong-wen, . Mining Technology of 300 m Long Fully-Mechanized Top Coal Caving Mining Face with Annual Production of over 10 Millions Tons[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (3).
    [9]Design of Construction Organization for Mine with Annual Production Over 10 Mt[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (4).
    [10]Technology and Practices on Mine Pressure Bumping Prevention and Control of Fully Mechanized Top Coal Caving Mining in Ultra Thick Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (4).
  • Cited by

    Periodical cited type(19)

    1. 张传伟,张刚强,路正雄,李林岳,何正伟,龚凌霄,黄骏峰. 极薄煤层破碎顶板条件下液压支架带压移架残余支撑力决策方法. 工矿自动化. 2025(03): 22-31+38 .
    2. 问永忠,贾澎涛,杨鸿宇,张龙刚. 基于TCN-GRU-DAB模型的工作面矿压智能预测研究. 中国煤炭. 2025(02): 102-112 .
    3. 席国军,余智秘,李亮,李小菲,丁自伟,刘江,张超凡. 胡家河煤矿综放工作面矿压显现规律预测及主控因素研究. 工矿自动化. 2024(01): 138-146 .
    4. 余琼芳,杨鹏飞,唐高峰. 基于LSTM-Informer模型的液压支架压力时空多步长预测. 工矿自动化. 2024(06): 30-35 .
    5. 何志铧,熊祖强. 基于Informer神经网络的工作面矿压预测研究. 矿业研究与开发. 2024(07): 142-148 .
    6. 乔永航,杨文明,陈湘源. 基于Bert-base模型深度学习的液压支架动作分类研究. 采矿技术. 2024(04): 286-290 .
    7. 巩师鑫. 数据驱动的深井超长工作面支架载荷区域特征分析与分区预测. 煤炭科学技术. 2024(S1): 1-12 . 本站查看
    8. 胡晓东,刘俊仪,王天宇,周福建,卢旭涛,易普康,陈超. 物理—数据双驱动的压裂压力实时预测方法. 石油实验地质. 2024(06): 1323-1335 .
    9. 朱宇伟,王朋飞,王慧娴,牛强强,辛亮. 基于经验模态分解线性模型的矿压预测. 煤炭科学技术. 2024(11): 223-232 . 本站查看
    10. 康静,姚春玲. Prophet-VAR组合优化模型在高值卷烟销量预测中的应用. 中国烟草学报. 2023(01): 127-134 .
    11. 李振华,徐杰,王文强,李国盛,杜锋. 基于Optuna-LSTM的矿压预测方法研究. 矿业研究与开发. 2023(03): 98-102 .
    12. 卢国志,胡斐,李鑫,姚春卉. 液压支架实时压力数据自动提取与动态分析方法研究. 煤炭工程. 2023(03): 120-126 .
    13. 冯银辉,宋阳,李务晋,吴雨欣,秦泽宇. 基于支架数据优化的工作面矿压预测模型研究. 煤炭工程. 2023(06): 101-107 .
    14. 李泽西. 基于可变时序移位Transformer-LSTM的集成学习矿压预测方法. 工矿自动化. 2023(07): 92-98 .
    15. 古瑶,解海军,周子鹏,李璐. 基于Attention机制的CNN-BiLSTM瞬变电磁实时反演方法. 煤田地质与勘探. 2023(10): 134-143 .
    16. 罗香玉,刘俊豹,罗颖骁,解盘石,伍永平. 基于时空关联分析的采煤工作面顶板压力预测方法. 工矿自动化. 2022(01): 85-90+97 .
    17. 杨胜利 ,王家臣 ,李明 . 煤矿采场围岩智能控制技术路径与设想. 矿业科学学报. 2022(04): 403-416 .
    18. 冀汶莉,田忠,张丁丁,欧阳一博. 基于遗传算法-深度神经网络的分布式光纤监测工作面矿压预测. 科学技术与工程. 2022(24): 10485-10492 .
    19. 刘伟,李国清,侯杰,王浩,陈连韫,范纯超. 基于大数据分析的矿山备件采购预测模型. 金属矿山. 2022(11): 179-185 .

    Other cited types(17)

Catalog

    Article views (137) PDF downloads (0) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return