Advance Search
WANG Hongwei, JIAO Jianqiang, WU Yongping, LIU Baoheng, ZHAO Huatao. Generalization characteristics of bearing structure in short wall fully-mechanized top-coal caving mining face of steeply inclined thick seam[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 56-64.
Citation: WANG Hongwei, JIAO Jianqiang, WU Yongping, LIU Baoheng, ZHAO Huatao. Generalization characteristics of bearing structure in short wall fully-mechanized top-coal caving mining face of steeply inclined thick seam[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 56-64.

Generalization characteristics of bearing structure in short wall fully-mechanized top-coal caving mining face of steeply inclined thick seam

More Information
  • Available Online: April 02, 2023
  • Published Date: November 24, 2021
  • In view of the difficulty of fully-mechanized mining in steeply inclined coal seam with thickness of 4 to 8 m,the horizontal sublevel short wall fully-mechanized caving method was proposed innovatively. In the No. 3-3c steeply inclined coal seam of Longquan Coal Mine,the single roadway integrated with excavation and recovery was arranged as working face,the pillar on sides of roadway was recovered ahead by spiral drilling machine,and the top coal was recovered by the vertical and horizontal self-moving supports. The Z-type ventilation was formed by constructing a ventilation roadway along the side of gob. Through theoretical analysis,numerical calculation and physical similarity simulation,the main mining parameters,including sectional height and ratio of mining height to caving height,were determined,and the characteristics of roof movement evolution,floor failure and sliding and the generalization of surrounding rock bearing structure were revealed. The results show that the effect of coal caving is better when the section height is 10 m and the ratio of mining height to caving height is 2.85. The cross-layer inclined masonry structure with multistage ladders is formed by migration of the critical layer,and the failure and slip modes of floor are extruding-translation,extruding-underdraught and extruding-upthrust in different areas of horizontal sublevel caving stope. Roof,pillar and floor are interrelated to form the roof-pillar-floor(R-P-F) chain structure. When the height of section with three sublevels is 30 to 45 m,the mutual conversion of strong and weak chains between structural units can be cut effectively in mining process,and the impact disaster caused by the roof falling over great extent and the instability of pillar can be prevented. The new mining method proposed and studied above provides the technological and theoretical basis for the safe and efficient production of such coal seams,and is of great significance to the sustainable development of coal in Xinjiang Region and even western China.
  • Related Articles

    [1]YAN Chaochao, ZHANG Guoen, CHANG Tong, WANG Pengfei, WANG Tianping, WU Changquan. Mechanical analysis of floor deformation and floor heave control technology for gob-side entry retaining in medium thick coal seam with shallow cover depth[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(10): 11-20. DOI: 10.12438/cst.2023-1382
    [2]CHANG Jucai, GUO Yijun, WU Bowen, SHI Wenbao, QI Chao, WANG Hongda. Study on failure characteristics and control of roof separation with weak interlayer of deep gob-side entry driving[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(9): 88-102. DOI: 10.12438/cst.2024-0557
    [3]WANG En, XIE Shengrong, CHEN Dongdong, LIU Ruipeng, FENG Shaohua. Failure mechanism and its control of surrounding rock for gob-side entry driving with narrow coal pillar in the working face with goaf on both sides[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(11): 41-50. DOI: 10.12438/cst.2021-1036
    [4]GAO Yongge, ZHANG Qiang, NIU Chu, ZHANG Kai. Analysis of actual measurement of cracks in overlying rock on roof of gob-side entry retaining during secondary mining[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(3): 78-84.
    [5]LIU Ju, HE Ruimin, YANG Peng, TANG Jiaxuan, WU Jianhua, KONG Deming. Research on deformation and failure law and control of roof in deep gob-side entry retaining[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (7).
    [6]Cui Jianjun. Study on deformation and failure mechanism and control technology of deeply gob-side entry driving[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (7).
    [7]Hua Xinzhu Li Zhihua Li Yingfu Yang Peng Kan Jiaguang, . Analysis on floor heave features of large cross section gob-side entry retaining in deep mine[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (9).
    [8]Zhang Yujun Gao Chao, . Overburden rock failure features of steep thick seam horizontal slicing full- mechanized caving mining[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (1).
    [9]ZHANG Yong ZHANG Bao LIU Jin-kai ZHAO Jian-jian LYU Wei-wei LI Qi, . Damage and Slip Mechanism of Floor in Longwall Mining on the Strike of Steep and Thick Coal Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (10).
    [10]HUA Xin-zhu Lu Xiao-yu Li Ying-fu, . Prevention and Control Technology of Floor Heave in Gob-side Entry Retaining with Large Section of Deep Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
  • Cited by

    Periodical cited type(31)

    1. 秦翥. 带式输送机智能化发展现状研究. 煤矿机械. 2025(01): 73-76 .
    2. 王春青,韩国庆,魏大伟,胡开庚,袁志金. 煤矿带式输送机AI视频监控系统与巡检机器人的对比研究. 煤矿机械. 2025(03): 98-100 .
    3. 方新秋,吴洋,宋扬,陈宁宁,丰宇龙,冯豪天,贺德幸,乔富康. 基于FBG传感器的带式输送机故障监测研究. 煤炭科学技术. 2025(01): 326-340 . 本站查看
    4. 董礼,程丽敏,赵博,王雁冰,商志强,朱盼盼. 基于改进模式识别的无人值守风电场群组机器人集中巡检研究. 可再生能源. 2025(03): 346-352 .
    5. 王洪磊,郭鑫,张亦凡,张俊升. 煤质煤量全面在线检测技术发展现状及应用进展. 煤炭科学技术. 2024(02): 219-237 . 本站查看
    6. 赵亮. 矿用带式输送机自动监控巡检系统分析. 现代制造技术与装备. 2024(01): 197-199 .
    7. 邵立新. 煤矿带式输送机巡检机器人关键技术研究. 机械管理开发. 2024(03): 192-193+196 .
    8. 田立勇,唐瑞,于宁,杨秀宇,秦文光. 带式输送机不停机更换托辊机器人研究与应用. 中国机械工程. 2024(05): 938-949 .
    9. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 .
    10. 盛彬,吴利刚,张楠. 融合轻量化神经网络的矿用输送带钢芯损伤检测方法. 控制工程. 2024(07): 1254-1262 .
    11. 徐明辉. 煤矿带式输送机综合控制技术的运用研究. 内蒙古煤炭经济. 2024(13): 130-132 .
    12. 高飞. 基于改进DDNet的皮带输送机位移故障诊断研究. 计算机测量与控制. 2024(08): 47-54 .
    13. 程德强,钱建生,郭星歌,寇旗旗,徐飞翔,顾军,高亚超,赵金升. 煤矿安全生产视频AI识别关键技术研究综述. 煤炭科学技术. 2023(02): 349-365 . 本站查看
    14. 蒋社想,周馨蕊. 带式输送机智能巡检系统设计. 煤炭技术. 2023(05): 203-206 .
    15. 桂改花,苑占江. 基于改进BP-PID的带式输送机速度控制方法. 工矿自动化. 2023(05): 104-111 .
    16. 李一文,陈湘源,张海峰. 煤矿井下巡检机器人机电转换充电方法. 自动化与仪表. 2023(06): 39-44 .
    17. 常健. 面向煤矿巡检任务的新型仿生爬线机器人关键技术. 煤矿安全. 2023(06): 244-248 .
    18. 秦伟,陈湘源,张海峰. 基于多轮驱动同步控制系统的矿用巡检机器人设计. 煤矿机械. 2023(08): 1-5 .
    19. 魏学平. 皮带运输机巡检机器人数据处理系统设计与实现. 机械工程与自动化. 2023(04): 144-146 .
    20. 范高鹏. 带式输送机自动监控巡检系统的设计应用. 江西煤炭科技. 2023(03): 238-240 .
    21. 蔺恩忠. 煤矿带式输送机轴承监测诊断系统应用研究. 科技资讯. 2023(16): 62-65 .
    22. 吴珊. 带式输送机托辊性能的分析及优化. 机械管理开发. 2023(10): 43-45 .
    23. 胡金良. 基于带式输送机的智能巡检研究. 中国安全科学学报. 2023(S1): 85-90 .
    24. 张立峰,武小芳. 基于PAC的输煤皮带巡检机器人设计与研究. 中国设备工程. 2023(23): 198-200 .
    25. 李洁. 煤矿多级带式输送机系统的节能控制研究. 机械管理开发. 2023(12): 202-204 .
    26. 张海峰. 煤矿挂轨式巡检机器人爬坡助力装置. 自动化与仪表. 2022(10): 48-51 .
    27. 王鹏,赵红菊. 煤矿场景下基于RGBD的视觉导航技术. 煤矿安全. 2022(11): 136-140 .
    28. 张超力,武国旺,孟超,王志红,刘红欣,梁国杰,霍斌洋,薛长站,苏周,梅东升. 输煤皮带巡检机器人系统上位机软件设计与实现. 能源与节能. 2022(12): 183-185 .
    29. 毛清华,李世坤,胡鑫,薛旭升,姚丽杰. 基于改进YOLOv7的煤矿带式输送机异物识别. 工矿自动化. 2022(12): 26-32 .
    30. 樊琛,王毅. 基于浮游式变压器巡检机器人系统设计与试验. 粘接. 2022(12): 174-177+191 .
    31. 刘寿恩. 露天输送带智能巡检系统设计. 数字技术与应用. 2021(11): 199-201 .

    Other cited types(5)

Catalog

    Article views (180) PDF downloads (721) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return