Advance Search
LIU Ju, HE Ruimin, YANG Peng, TANG Jiaxuan, WU Jianhua, KONG Deming. Research on deformation and failure law and control of roof in deep gob-side entry retaining[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (7).
Citation: LIU Ju, HE Ruimin, YANG Peng, TANG Jiaxuan, WU Jianhua, KONG Deming. Research on deformation and failure law and control of roof in deep gob-side entry retaining[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (7).

Research on deformation and failure law and control of roof in deep gob-side entry retaining

More Information
  • Available Online: April 02, 2023
  • Published Date: July 24, 2019
  • In order to solve the problem of severe deformation of the roof in deep gob-side entry retaining, the combination of FLAC3D numerical simulation and engineering practice were applied to study the evolution law of the basic top of the track roadway of the 1115 working face in Guqiao Coal Mine from the excavation to the secondary mining stage. The results showed that: ① The deformation of the roof is symmetrically distributed during the excavation stage. The slope of the intersection of the roof sinking curve is 7.25×10-4 during the first mining influenced stage, the slope of the intersection point has increased by 6 times during roadway retaining, and the skew effect is significantly enhanced. The slope of the intersection point of the roof sinking curve of the secondary mining stage is 3.2 times bigger than that during the roadway retaining. The skew effect is increased, but mainly due to translational subsidence; ② The deformation of the roof is gradually increased, and the maximum subsidence of the roof of the roadway during the excavation is 69.2mm. In the future, the deformation of each stage increased by 0.99 times, 0.82 times and 2.13 times compared with the previous stage. The deformation of the roof along the roadway is gradually becoming more and more severe, and the difficulty of support is significantly increased. The support design of the roadway along the gob should be coordinated. ③ The principle of roof control for deep mine along the roadway is proposed by the principle of ensuring the completeness of the immediate roof, step-by-step strengthening of each stage and weakening deformation of the roof. The engineering verification can achieve the strong deformation of the roof of the roadway along the deep roadway.
  • Related Articles

    [1]ZHANG Xiaoyu, LI Bobo, LI Jianhua, JIA Lidan, DING Yunna, SONG Haosheng. Anisotropic permeability model considering gas and water adsorption and stress[J]. COAL SCIENCE AND TECHNOLOGY. DOI: 10.12438/cst.2023-1943
    [2]LI Huiting, CHANG Suoliang, ZHANG Sheng, LIU Bo, ZHAO Xing, YU Pan. Evaluation of coal seam roof water-bearing risk area via anisotropic high-resolution seismic processing[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 192-200. DOI: 10.12438/cst.2023-0376
    [3]LI Zhen, WU Guanyang, SI Shangjin, LIU Guangxu, LI Mingming, ZHANG Chengxiang, XU Rongchao. Differences between reverse and normal shear in failure characteristics of layered rocks[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(7): 37-47. DOI: 10.12438/cst.2024-0222
    [4]ZHU Chuanqi, WANG Lei, CHEN Lipeng, ZHANG Yu, WANG Ancheng. Wave velocity evolution and fracture distribution of soft coal under uniaxial compression[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 288-301. DOI: 10.12438/cst.2023-1388
    [5]CHEN Lichao, WANG Shengwei, ZHANG Diankun. Experimental investigation on fracture behavior of lignite and its fracturing significance:taking Shengli Coalfield as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 63-71. DOI: 10.13199/j.cnki.cst.2021-1313
    [7]LI Qin, ZHAO Bin, MA Suibo. Study on characteristics of seismic wave velocity response in orthotropic fractured coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6).
    [8]LIN Baiquan, SONG Haoran, YANG Wei, ZHAO Yang, ZHA Wei. Study on effective gas drainage area based on anisotropic coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6).
    [9]Guo Xiaojie Huan Xuan Gong Weidong Zhang Yugui, . Study on coal complex resistivity anisotropy and characteristics of frequency response[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4).
    [10]Study on Coal Conductive Properties of Different Coal Structure[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (7).
  • Cited by

    Periodical cited type(2)

    1. 李贵山,于振锋,杨晋东,宋新亚,郭琛. 沁水盆地郑庄区块煤层气水平井钻井体系优化. 煤炭科学技术. 2023(04): 118-126 . 本站查看
    2. 刘一楠,吴翔,李勇,徐立富. 古交矿区太原组煤层气开发地质特征及产能优化. 煤炭科学技术. 2022(08): 125-132 . 本站查看

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return