高级检索

侏罗系地层巷道淋水顶板破坏机理及治理研究

李学彬, 谷群涛, 温国惠, 孙兆冰, 朱建平, 陈明虎, 周玉颖

李学彬,谷群涛,温国惠,等. 侏罗系地层巷道淋水顶板破坏机理及治理研究[J]. 煤炭科学技术,2023,51(9):170−179. DOI: 10.12438/cst.2022-1200
引用本文: 李学彬,谷群涛,温国惠,等. 侏罗系地层巷道淋水顶板破坏机理及治理研究[J]. 煤炭科学技术,2023,51(9):170−179. DOI: 10.12438/cst.2022-1200
LI Xuebin,GU Quntao,WEN Guohui,et al. Study on damage mechanism and treatment of water sprayed roof in Jurassic stratum roadway[J]. Coal Science and Technology,2023,51(9):170−179. DOI: 10.12438/cst.2022-1200
Citation: LI Xuebin,GU Quntao,WEN Guohui,et al. Study on damage mechanism and treatment of water sprayed roof in Jurassic stratum roadway[J]. Coal Science and Technology,2023,51(9):170−179. DOI: 10.12438/cst.2022-1200

侏罗系地层巷道淋水顶板破坏机理及治理研究

基金项目: 

河北省教育厅科学技术研究资助项目(BJK2022067);华北科技学院校内基金资助项目(3142017094)

详细信息
    作者简介:

    李学彬: (1981—),男,山东潍坊人,副教授,博士。E-mail:lixuebin152@163.com

  • 中图分类号: TD353

Study on damage mechanism and treatment of water sprayed roof in Jurassic stratum roadway

Funds: 

Science and Technology Research Funding Project of Hebei Provincial Department of Education (BJK2022067); Internal Fund Support Project of North China University of Science and Technology (3142017094)

  • 摘要:

    我国西部侏罗系主采煤层顶板普遍赋存低层位弱富水层,导致巷道顶板尤其是顶板锚索孔长时间淋水,降低顶板围岩强度和顶板支护效果,影响矿井煤巷顶板安全。为了研究淋水顶板破坏机理及治理措施,以内蒙古双欣矿业杨家村煤矿414106辅助运输巷淋水区为研究对象,通过现场调研和顶板钻孔取样可知,向斜区巷道顶板4 m以上区域存在明显导水裂隙,锚索孔流水呈线性淋水状态,顶板围岩弯离层程度大,部分锚索锚固段脱离围岩失效。矿物成分分析和水理试验表明,顶板砂质泥岩的黏土矿物中高岭石含量高达73%,软化系数为0.162,具有明显的遇水软化特性。淋水区巷道顶板围岩初期以静水压力破坏为主,遇水软化特性降低了裂隙结构面的力学性能,在静水压力作用下围岩裂隙的尺寸剪性扩张;后期以动水压力破坏为主,主要表现为裂隙结构面变形扩展、裂隙充填物位移、管涌等,顶板围岩破坏速度也逐步加快。结合巷道淋水顶板围岩由矿压显现变形和裂隙软化扩张发展到管涌冲刷破坏的全过程分析,按照顶板钻孔围岩破坏主要形式(物理软化、渗流破坏、吸蚀扩容破坏、冲刷变形破坏)划分为4个不同阶段,形成了以顶板钻孔围岩破坏主要形式、顶板锚索孔流水状态、顶板围岩裂隙发育特征和治水加固原则为关键指标的巷道淋水顶板破坏发展阶段判定准则。结合现场条件,确定了414106运输巷淋水区为淋水顶板破坏发展第Ⅲ阶段,提出了淋水区巷道顶板锚索封孔注浆(疏水)结构形式和“深孔疏水+浅部封水+深部加固+高预应力支护”原则,制定了淋水区巷道顶板高预紧力长锚索补强与封孔注浆相结合的锚封注一体化补强方案,通过现场工业性试验和矿压监测可知,达到顶板治水和围岩加固的效果。

    Abstract:

    The roof of the Jurassic main coal seam in western China generally contained low level weak rich water layer, which led to the long-term watering of the roof of the coal roadway especially the roof anchor cable hole and the reduction of the roof surrounding rock strength and the roof support effect, and affected the safety of the coal roadway roof. In order to study the damage mechanism and control measures of the water sprayed roof, the No.414106 auxiliary transportation water spraying area of Yangjiacun Coal Mine of Shuangxin Mining in Inner Mongolia was taken as the research object. Through field investigation and roof drilling sampling, it could be seen that there were obvious water conducting cracks in the area 4m above the roof of the roadway in the synclinal area. The water flowing from the anchor cable hole was in a linear water spraying state. The roof surrounding rock had a large degree of deflection, and some anchor cable anchorage sections were separated from the surrounding rock. The mineral composition analysis and water physical test showed that the clay minerals in the roof sandy mudstone contain up to 73% kaolinite, and the softening coefficient is 0.162, which had obvious water softening characteristics. At the initial stage, the roof of the coal roadway in the water spraying area was mainly destroyed by hydrostatic pressure, and the water softening property reduced the mechanical properties of the fracture structural plane, which led to the expansion of the size of the surrounding rock fractures in shear under the action of hydrostatic pressure. In the later stage, the roof surrounding rock was mainly destroyed by hydrodynamic pressure, which was mainly manifested in the deformation and expansion of fracture structural plane, displacement of fracture fillings, piping, etc. The destruction speed of roof surrounding rock was gradually accelerated. The whole process of surrounding rock of water drenching roadway roof from ground pressure appearance deformation and crack softening expansion to piping corrosion failure was analyzed. According to the main forms of the surrounding rock failure of roof drilling (physical softening, seepage failure, suction corrosion expansion failure, scouring deformation failure), it was divided into four different stages. The criteria for determining the development stage of roof failure of roadway drenching water had been formed with the main forms of roof drilling surrounding rock failure, the flow state of the roof anchor cable hole, roof surrounding rock fracture development characteristics and water control reinforcement principles as the key indicators. Combined with the site conditions, the 414106 auxiliary transportation water spraying area was the Ⅲ stage of the development of spraying roof damage. The structural form of anchor cable sealing grouting (drainage) and the principle of “deep hole drainage + shallow water sealing + deep reinforcement + high pressures support” were proposed for the roof of the roadway in the spraying area. An integrated reinforcement scheme of anchoring, sealing and grouting, which combined the reinforcement of high pre-tightened long anchor cables and sealing and grouting on the roof of the roadway in the water-spraying area, had been formulated. According to the field industrial test and rock pressure monitoring, the effect of roof water control and surrounding rock reinforcement was achieved.

  • 图  1   顶板钻孔柱状

    Figure  1.   Histogram of drilling holes in roof

    图  2   淋水顶板巷道现场

    Figure  2.   Site map of the roadway in the roof spraying area

    图  3   X射线衍射图谱

    Figure  3.   X-ray diffraction pattern

    图  4   顶板钻孔破坏窥视

    Figure  4.   Peek view of top plate drilling damage

    图  5   顶板孔围岩破坏示意

    Figure  5.   Schematic diagram of the failure of the surrounding rock of the roof hole

    图  6   顶板钻孔疏水示意

    Figure  6.   Schematic diagram of the top plate drilling hydrophobic

    图  7   巷道淋水顶板治理方案

    Figure  7.   Roof reinforcement scheme of roadway in water spray area

    图  8   普通锚索封孔注浆施工设计与现场施工

    Figure  8.   Construction design and on-site construction of ordinary anchor cable sealing and grouting

    图  9   巷道矿压监测分析

    Figure  9.   Monitoring and analysis of roadway mine pressure

    表  1   试件水理试验物理参数

    Table  1   Physical parameters of the water test of the specimen

    试件状态单轴抗压强度/MPa抗拉强度/MPa弹性模量/GPa泊松比内摩擦角/(°)黏聚力/MPa
    干燥状态22.421.6113.150.1228.1012.33
    自然状态5.350.502.850.214.241.15
    饱水状态3.630.321.560.352.660.85
    下载: 导出CSV

    表  2   淋水顶板破坏发展阶段对比

    Table  2   Comparison of development stages of roof water spray damage

    淋水顶板
    破坏阶段
    钻孔围岩破坏
    主要形式
    顶板锚索孔
    流水状态
    顶板围岩裂隙发育特征主要治理措施
    物理软化钻孔无水整体无裂隙,离层变形破坏高预应力支护
    渗流潜蚀钻孔滴水围岩完整性较好,浅部无裂隙封堵锚索孔浅部,阻止流水,高预应力支护
    吸蚀扩容钻孔线性淋水顶板围岩完整性较差,部分裂隙贯通,
    顶板离层较为明显
    封堵围岩浅部裂隙和锚索孔,高压注浆加
    固围岩,高预应力支护
    冲刷变形顶板整体线状淋水顶板围岩裂隙贯通,锚固段围岩破坏,
    顶板离层严重
    架棚支护,围岩深部堵水加固,高预应力
    支护,巷内悬挂隔水板或雨棚
    下载: 导出CSV
  • [1] 王渭明,赵增辉,王 磊. 考虑刚度和强度劣化时弱胶结软岩巷道围岩弹塑性损伤分析[J]. 采矿与安全工程学报,2013,30(5):680−685.

    WANG Weiming,ZHAO Zenghui,WANG Lei,et al. Elastic-plastic damage analysis for weakly consolidated surrounding rock regarding stiffness and strength cracking[J]. Journal of Mining & Safety Engineering,2013,30(5):680−685.

    [2] 李 清,侯 健,王梦远,等. 弱胶结砂质泥岩渐进性破坏力学特性试验研究[J]. 煤炭学报,2016,41(S2):385−392. doi: 10.13225/j.cnki.jccs.2016.0065

    LI Qing,HOU Jian,WANG Mengyuan,et al. Experimental investigations on mechanical characteristics of weakly cemented sandy mudstone under progressive failure[J]. Journal of China Coal Society,2016,41(S2):385−392. doi: 10.13225/j.cnki.jccs.2016.0065

    [3] 贾海宾,苏丽君,秦 哲. 弱胶结地层巷道地应力数值反演[J]. 山东科技大学学报(自然科学版),2011,30(5):30−35.

    JIA Haibin,SU Lijun,QIN Zhe. Ground stress numerical inversion of roadways with weakly cemented strata[J]. Journal of Shandong University of Science and Technology (Natural Science),2011,30(5):30−35.

    [4] 谢小帅,陈华松,肖欣宏,等. 水岩耦合下的红层软岩微观结构特征与软化机制研究[J]. 工程地质学报,2019,27(5):966−972. doi: 10.13544/j.cnki.jeg.2019028

    XIE Xiaoshuai,CHEN Huasong,XIAO Xinhong,et al. Micro-structure characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology,2019,27(5):966−972. doi: 10.13544/j.cnki.jeg.2019028

    [5] 孙利辉,纪洪广,杨本生. 西部典型矿区弱胶结地层岩石的物理力学性能特征[J]. 煤炭学报,2019,44(3):866−874. doi: 10.13225/j.cnki.jccs.2018.6039

    SUN Lihui,JI Hongguang,YANG Bensheng. Physical and mechanical characteristic of rocks with weakly cemented strata in Western representative mining area[J]. Journal of China Coal Sociey,2019,44(3):866−874. doi: 10.13225/j.cnki.jccs.2018.6039

    [6] 赵增辉, 马 庆, 高晓杰, 等. 弱胶结软岩巷道围岩非协同变形及灾变机制. 采矿与安全工程学报, 2019, 36(2): 272−279.

    ZHAO Zenghui, MA Qing, GAO Xiaojie, et al. Non-synergistic deformation and catastrophic mechanism of surrounding rock of weakly cemented soft rock road-way[J]. Journal of Mining Safety Engineering, 2019, 36(2): 272−279.

    [7] 李学彬, 曲广龙, 杨春满, 等. 弱胶结巷道新型聚合物喷层材料及其喷射支护技术研究[J], 采矿与安全工程学报, 2019, 36(1): 95−102.

    LI Xuebin, QU Guanglong, YANG Chunman et al. Study on new polymer spray-layer material and its spray support technology for weakly cemented rock roadway[J], Journal of Mining & Safety Engineering, 2019, 36(1): 95−102.

    [8] 王 普,张百胜,王 磊,等. 膨胀软岩顶板回采巷道支护技术研究[J]. 采矿与岩层控制工程学报,2020,2(2):53−61.

    WANG Pu,ZHANG Baisheng,WANG Lei,et al. Research on roof falling mechanism and support tech-nology of mining roadway in expansive soft rock[J]. Journal of Mining and Strata Control Engineering,2020,2(2):53−61.

    [9] 康红普. 我国煤矿巷道锚杆支护技术发展60年及展望[J]. 中国矿业大学学报, 2016, 45(6): 1071−1081.

    KANG Hongpu. Sixty years development and prospects of rock bol-ting technology for underground coal mine roadways in China[J], Journal of China University of Mining and Technology, 2016, 45(6): 1071−1081.

    [10] 杨仁树,朱 晔,李永亮,等. 弱胶结软岩巷道层状底板底鼓机理及控制对策[J]. 采矿与安全工程学报,2020,37(3):444−450. doi: 10.13545/j.cnki.jmse.2020.03.002

    YANG Renshu,ZHU Ye,LI Yongliang,et al. Floor heave mechanism and control measures of layered floor in weakly cemented soft rock roadway[J]. Journal of Mining Safety Engineering,2020,37(3):444−450. doi: 10.13545/j.cnki.jmse.2020.03.002

    [11] 孟庆彬, 韩立军, 浦 海, 等. 极弱胶结地层煤巷支护体系与监控分析[J]. 煤炭学报, 2016, 41(1): 234−245.

    MENG Qingbin, HAN Lijun, PU Hai, et al. Research and monitoring analysis of coal roadway bolting system in very weakly cemented stratum[]. Journal of China Coal Society, 2016, 41(1): 234−245.

    [12] 吴学明, 伍永平, 张建华, 等. 富水软岩斜井局部失稳机理及治理对策[J], 煤田地质与勘探, 2010, 38(6): 48−53.

    WU Xueming, WU Yongping, ZHANG Jianhua, et al. Local instability mechanism and countermeasures for inclined-shaft with water-abundant soft rock[J]. Coal Geology Exploration, 2010, 38(6): 48−53.

    [13] 张嘉凡, 程树范, 王 焕, 等. 西部弱胶结软岩细观结构及水理特性试验[J]. 煤田地质与勘探, 2020, 48(3): 116−121.

    ZHANG Jiafan, CHENG Shufan, WANG Huan, et al. Experiment of microstructure and hydrologic characteristics of weakly cemented soft rocks in western China[J]. Coal Geology & Exploration, 2020, 48(3): 116−121.

    [14] 朱珍德,邢福东,王思敬,等. 地下水对泥板岩强度软化的损伤力学分析[J]. 岩石力学与工程学报,2004,23(S2):4739−4743. doi: 10.3321/j.issn:1000-6915.2004.z2.013

    ZHU Zhende,XING Fudong,WANG Sijing,et al. Analysis on strength softening of agrillite under groundwater by damage mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(S2):4739−4743. doi: 10.3321/j.issn:1000-6915.2004.z2.013

    [15] 姚强岭,李学华,陈庆峰. 含水砂岩顶板巷道失稳破坏特征及分类研究[J]. 中国矿业大学学报,2013,42(1):50−56.

    YAO Qiangling,LI Xuehua,CHEN Qingfeng. Research on the characteristics and classification of water-enriched sandstone roofs[J]. Journal of China University of Mining & Technology,2013,42(1):50−56.

    [16] 赵增辉, 杨 鹏, 张明忠, 等. 水环境和非均匀地压联合作用下弱胶结软岩巷道围岩稳定性解析[J]. 采矿与安全工程学报, 2022, 39(1): 126−135.

    ZHAO Zenghui, YANG Peng, ZHANG Mingzhong, et al. Stability of weakly cemented soft surrounding rock under combined effect of water environment and inhomogeneous grounds stress[J]. Journal of Mining & Safety Engineering, 2022, 39(1): 126−135.

    [17] 谭云亮,于凤海,马成甫,等. 弱胶结软岩煤巷锚杆索-围岩变形协同控制方法研究[J]. 煤炭科学技术,2021,49(1):198−207.

    TAN Yunliang,YU Fenghai,MA Chengfu,et al. Research on collabration control method of bolt-cable-surrounding rock deformation in weakly cemented soft rock coal roadway[J]. Coal Science and Technology,2021,49(1):198−207.

    [18] 蔡金龙, 涂 敏, 张华磊, 侏罗系弱胶结软岩回采巷道变形失稳机理及围岩控制技术研究[J]. 采矿与安全工程学报, 2020, 37(6): 1114−1122

    CAI Jinlong, TU Min, ZHANG Hualei. Deformation and instability mechanism and control technology of mining gateway for Jurassic weak-cemented soft rock roadways[J]. Journal of Mining & Safety Engineering, 2020, 37(6): 1114−1122.

    [19] 李学彬,杨仁树,高延法,等. 杨庄矿软岩巷道锚杆与钢管混凝土支架联合支护技术研究[J]. 煤炭学报,2015,32(2):285−290.

    LI Xuebin,YANG Renshu,GAO Yanfa,et al. Study on combined support technology of bolt-mesh-shot Crete and concrete filled steel tubular supports for soft rock roadway in Yangzhuang Mine[J]. Journal of China Coal Society,2015,32(2):285−290.

    [20] 孟庆彬,钱 唯,韩立军,等. 极软弱地层双层锚固平衡拱结构形成机制研究[J]. 采矿与安全工程学报,2019,36(4):650−656. doi: 10.13545/j.cnki.jmse.2019.04.002

    MENG Qingbin,QIAN Wei,HAN Lijun,et al. Formation mechanism of arch structure balanced by double-layer anchor in extremely weak strata[J]. Journal of Mining & Safety Engineering,2019,36(4):650−656. doi: 10.13545/j.cnki.jmse.2019.04.002

    [21] 宁建国,刘学生,谭云亮,等. 浅埋煤层工作面弱胶结顶板破断结构模型研究[J]. 采矿与安全工程学报,2014,31(4):570−579. doi: 10.13545/j.issn1673-3363.2014.04.012

    NING Jianguo,LIU Xuesheng,TAN Yunliang,et al. Fracture structure model of weakly cemented roof in shallow seam[J]. Journal of Mining & Safety Engineering,2014,31(4):570−579. doi: 10.13545/j.issn1673-3363.2014.04.012

    [22] 张壮路. 工作面顶板涌水量预测的渗流与应力耦合方法研究[D]. 北京: 煤炭科学研究总院, 2009.

    ZHANG Zhuanglu. Research on seepage and stress coupling method for prediction of water inflow from working face roof [D]. Beijing: Chinese Institute of Coal Science, 2009.

    [23] 李学彬. 一种含水区域锚索或锚杆孔封孔方法、封孔剂及搅拌器[P]. 中国: 201810808585.8. 2021-5-25.
    [24] 李学彬. 一种环形空间的快速封孔装置[P]. 中国: 202021448514.0. 2021-02-26.
  • 期刊类型引用(24)

    1. 李振,余奕睿,王红伟,冯国瑞,何富连,王德璋,周劲辉,柳路妍,韩鑫磊. 承压破碎无烟煤气体渗透特性影响因素实验研究. 煤田地质与勘探. 2024(03): 1-13 . 百度学术
    2. 史晓凯,陈文慧,王浩,李文军,狄子琛,赵瑞彤,宋慧平,吴海滨. 煤矸石规模化综合利用整体解决方案研究. 中国煤炭. 2024(03): 133-142 . 百度学术
    3. 吴平. 深埋地下洞室围岩应力分析. 安徽建筑. 2024(04): 123-126 . 百度学术
    4. 陆泳鑫,胡胜勇,李国富,武玺,路佳旗,杨育涛,张村,苏燕. 采空区下伏煤层水力压裂试验研究与应用. 煤炭科学技术. 2024(04): 231-242 . 本站查看
    5. 韦波,杨曙光,李鑫,王双明,师庆民,杨兰和,王刚,傅雪海,苏红梅,贾超,胡振鹏,赵琛. 倾斜煤层煤层气与煤炭地下气化协调开发技术构想. 煤炭科学技术. 2024(05): 152-165 . 本站查看
    6. 随峰堂,尚建华,朱建刚,丁海. 废弃矿井剩余资源特征及其利用研究——以淮北煤田卧龙湖煤矿为例. 淮南职业技术学院学报. 2024(03): 128-130 . 百度学术
    7. 张纯旺,金智新,冯国瑞,高瑞,李春. 废弃矿井采空区覆岩裂隙网络水气两相渗流特性研究. 中国矿业. 2024(08): 37-45 . 百度学术
    8. 徐影,李亚辉,杨樱花,刘卫娟. 穿采空区煤层气水平井井眼与管柱相容性分析及应用研究. 煤. 2024(09): 28-31 . 百度学术
    9. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 . 本站查看
    10. 桑树勋,刘世奇,韩思杰,郑司建,刘统,周效志,王冉,王猛. 中国煤炭甲烷管控与减排潜力. 煤田地质与勘探. 2023(01): 159-175 . 百度学术
    11. 张吉雄,周楠,高峰,闫浩. 煤矿开采嗣后空间矸石注浆充填方法. 煤炭学报. 2023(01): 150-162 . 百度学术
    12. 张大陆. 煤层气废弃井处置研究. 能源与节能. 2023(04): 219-221 . 百度学术
    13. 朱国栋. 100T分体型车载钻机穿越采空区试验研究. 煤矿机械. 2023(06): 66-68 . 百度学术
    14. 徐华龙. 煤与煤层气协调开发三维仿真设计研究. 中国煤炭. 2023(05): 87-93 . 百度学术
    15. 王浩,李斌,王雨婷,李绍令,张国澎,杨大山,白利军,王聪. 废弃矿井残余煤层气开采多能互补直流微电网关键技术及瓶颈问题. 煤炭学报. 2023(04): 1798-1813 . 百度学术
    16. 梁运培,李左媛,朱拴成,陈强,王鑫,秦朝中. 关闭/废弃煤矿甲烷排放研究现状及减排对策. 煤炭学报. 2023(04): 1645-1660 . 百度学术
    17. 张源,他旭鹏,师鹏,张洪伟. 废弃矿井蓄洪储能与取热综合利用模式研究. 煤炭科学技术. 2023(06): 197-204 . 本站查看
    18. 李延河,倪小明,王保玉,赵锦程. 首山一矿采空区地面高效抽采煤系气井优化设计. 煤炭技术. 2023(10): 27-30 . 百度学术
    19. 余传涛,柳春林,薛俊杰,张富明,李勇. 废弃矿井煤层气资源地球物理勘探研究进展. 吉林大学学报(地球科学版). 2023(06): 1991-2005 . 百度学术
    20. 樊殿鑫. 荆宝煤业掘进工作面过采空区注浆加固技术研究. 晋控科学技术. 2023(06): 32-35 . 百度学术
    21. 赵路正. 煤矿区煤层气产业发展科技趋势与攻关方向. 煤炭经济研究. 2022(01): 47-52 . 百度学术
    22. 吉莉,刘峰,尚建选,董霁红,黄艳利. 关闭矿山地下空间资源定量评估与再利用途径. 煤炭科学技术. 2022(05): 281-289 . 本站查看
    23. 李国富,张遂安,季长江,李军军,王朝帅. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系. 煤炭科学技术. 2022(12): 14-25 . 本站查看
    24. 降文萍,柴建禄,张群,张培河,姜在炳. 基于煤层气与煤炭协调开发的地面抽采工程部署关键技术进展. 煤炭科学技术. 2022(12): 50-61 . 本站查看

    其他类型引用(9)

图(9)  /  表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  8
  • PDF下载量:  30
  • 被引次数: 33
出版历程
  • 收稿日期:  2022-07-27
  • 网络出版日期:  2023-08-08
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回