高级检索

聚丙烯纤维改性超细水泥复合注浆材料性能研究

曾熙文, 王艳芬, 赵光明, 程详, 艾洁, 李英明, 孟祥瑞

曾熙文,王艳芬,赵光明,等. 聚丙烯纤维改性超细水泥复合注浆材料性能研究[J]. 煤炭科学技术,2024,52(7):57−67. DOI: 10.12438/cst.2023-1292
引用本文: 曾熙文,王艳芬,赵光明,等. 聚丙烯纤维改性超细水泥复合注浆材料性能研究[J]. 煤炭科学技术,2024,52(7):57−67. DOI: 10.12438/cst.2023-1292
ZENG Xiwen,WANG Yanfen,ZHAO Guangming,et al. Study on properties of polypropylene fiber-modified ultrafine cement composite grouting materials[J]. Coal Science and Technology,2024,52(7):57−67. DOI: 10.12438/cst.2023-1292
Citation: ZENG Xiwen,WANG Yanfen,ZHAO Guangming,et al. Study on properties of polypropylene fiber-modified ultrafine cement composite grouting materials[J]. Coal Science and Technology,2024,52(7):57−67. DOI: 10.12438/cst.2023-1292

聚丙烯纤维改性超细水泥复合注浆材料性能研究

基金项目: 

国家自然科学基金资助项目(52204082);安徽省高校优秀青年科研资助项目(2023AH030040);安徽省科技重大专项资助项目(202203a07020011)

详细信息
    作者简介:

    曾熙文: (1993—),男,湖南邵东人,硕士研究生。E-mail:honglanga524@126.com

    通讯作者:

    王艳芬: (1986—),女,山西灵石人,副教授,硕士生导师。E-mail:wangyanfenyu@163.com

  • 中图分类号: TD353

Study on properties of polypropylene fiber-modified ultrafine cement composite grouting materials

Funds: 

National Natural Science Foundation of China (52204082); Outstanding Youth Research Project of Anhui University (2023AH030040); Anhui Province Science and Technology Major Project (202203a07020011)

  • 摘要:

    为获得高性能矿用水泥基注浆材料,拓展短切纤维在全长锚固领域的应用,以超细硅酸盐水泥为胶凝材料,速凝剂、膨胀剂、聚羧酸减水剂作外加剂,基于单因素试验,探究聚丙烯纤维(PPF)掺量对水泥注浆材料的力学性能、可注性、泌水性、凝结时间、体积收缩性及微观结构的影响规律,并筛选PP改性超细水泥浆液作锚固剂,研究相似实验拉拔条件下全长锚固系统的力学承载性能与声发射特征。结果表明:PPF掺量对超细水泥注浆材料的浆液特性与力学性能具有显著影响,可明显改善超细水泥注浆材料的抗压性能,缩短终凝时间,减小流动度,尤其抗折强度与PPF掺量呈正相关关系。当PPF掺量0.1%时,复合注浆材料S1的综合性能最佳,硬化结石体3 d和28 d抗压强度为60.1 MPa和83.7 MPa,比未添加PPF的参照组S0提高23.4%和23.2%;XRD、SEM及FTIR微观表征证实,适宜PPF不仅能促进水化反应,而且可改善结石体内部裂隙,发挥桥连作用并传递应力,延缓裂纹扩展;拉拔试验表明,基于该复合注浆材料的全长锚固体系力学性能、残余承载能力和最大变形量显著增强,最高拉拔强度是参照组S0的1.356倍,推迟了声发射事件的发生,提升巷道围岩稳定性,为类似全长锚固提供借鉴。

    Abstract:

    In order to obtain high performance cement-based grouting materials for mining and expand the application of staple fiber in the field of full-length anchorage, Utilizing ultrafine silica cement as the binder material, with the addition of accelerator, expansion agent, and polycarboxylate superplasticizer as additives, a single-factor experiment was conducted to investigate the influence of polypropylene fibers (PPF) content on the mechanical properties, pumpability, bleeding, setting time, volume shrinkage, and microstructure of cement-based grouting materials. For ultrafine cement-based slurries modified with PPF selected as anchor materials, the mechanical load bearing properties and acoustic emission characteristics of the full-length anchoring system were studied under similar pull-out condition. The results revealed that PPF content significantly impacted the slurry characteristics and mechanical property of ultrafine cement grouting materials. It notably enhanced the compressive performance and material toughness while shortening the initial setting time and reducing fluidity. Particularly, there was a positive correlation between flexural strength and PPF content. When the PPF content was 0.1%, the comprehensive performance of composite grouting material S1 was optimal. The compressive strength of the hardened specimens at 3 d and 28 d was 60.1 MPa and 83.7 MPa, respectively, which is 23.4% and 23.2% higher than the reference group S0 without PPF. Microscopic characterizations including XRD, SEM, and FTIR confirmed that the suitable PPF not only facilitated hydration reaction but also improved internal cracks within the hardened body. It acted as a bridge, transferred stress, and delayed crack propagation. Pull-out tests indicated that the mechanical property, residual bearing capacity, and maximum deformation of the full-length anchoring system based on this composite grouting material were significantly enhanced. The maximum pull-out strength was 1.356 times the reference group S0, and the occurrence of acoustic emission events was delayed. It improved the stability of roadway surrounding rocks, providing valuable insights for the similar full-length anchoring applications.

  • 图  1   超细硅酸盐水泥成分

    Figure  1.   Superfine Portland cement composition

    图  2   原材料照片

    Figure  2.   Raw material images

    图  3   力学性能测试设备

    Figure  3.   Mechanical performance testing equipment

    图  4   拉拔试验流程

    Figure  4.   Pull-out test diagram

    图  5   PPF改性超细水泥复合注浆材料抗压强度

    Figure  5.   Compressive strength of PPF modified superfine cement composite grouting materials

    图  6   复合注浆材料断面照片

    Figure  6.   Cross-section photos of composite grouting materials

    图  7   断面重建图

    Figure  7.   Cross-section reconstruction diagram

    图  8   PPF改性超细水泥复合注浆材料抗折强度

    Figure  8.   Flexural strength of PPF modified superfine cement composite grouting materials

    图  9   PPF改性超细水泥复合注浆材料的凝结时间

    Figure  9.   Setting time of PPF modified superfine cement composite grouting material

    图  10   PPF改性超细水泥复合注浆材料的流动度

    Figure  10.   Fluidity of PPF modified superfine cement composite grouting materials

    图  11   复合注浆材料泌水性测试

    Figure  11.   Hydrocele test of composite grouting materials

    图  12   PPF改性超细水泥复合注浆材料养护28 d膨胀系数

    Figure  12.   Expansion coefficient of PPF modified superfine cement composite grouting material for curing 28 d

    图  13   超细水泥热力学模型水化产物

    Figure  13.   Hydration products in thermodynamic modeling of superfine cement

    图  14   复合注浆材料XRD图谱

    Figure  14.   XRD pattern of composite grouting materials

    图  15   注浆材料FTIR图谱及反卷积拟合图像

    Figure  15.   FTIR spectrum and deconvolution fitting image of the grouting materials

    图  16   聚丙烯纤维的SEM图片

    Figure  16.   SEM images of PPF fiber

    图  17   PPF改性超细水泥复合注浆材料养护3 d的SEM断面图片

    Figure  17.   SEM image of PPF modified superfine cement composite grouting materials curing for 3 d

    图  18   PPF改性超细水泥复合注浆材料的水化示意

    Figure  18.   Hydration diagram of PPF modified superfine cement composite grouting material

    图  19   全长锚固结构的荷载−位移曲线

    Figure  19.   Force-displacement diagram of full-length anchorage structure

    图  20   全长锚固结构拉拔后的破坏特征

    Figure  20.   Characteristics of full-length anchorage structures after drawing

    图  21   全长锚固体系的AE累计能量、振铃计数、荷载随时间变化曲线

    Figure  21.   AE cumulative energy, ringing count and load curve of full-length anchorage system with time

    表  1   注浆材料试样配比

    Table  1   Mix proportion of grouting material

    试件 质量分数/%
    水泥 膨胀剂 速凝剂 PPF 减水剂
    S0 100 6 4 0 0.35 35
    S1 100 6 4 0.1 0.35 35
    S3 100 6 4 0.4 0.35 35
    S5 100 6 4 0.7 0.35 35
    S7 100 6 4 1.1 0.35 35
    S9 100 6 4 1.5 0.35 35
    下载: 导出CSV
  • [1] 张进鹏,刘立民,刘传孝,等. 基于预应力锚和自应力注的破碎围岩锚注加固应用研究[J]. 采矿与安全工程学报,2021,38(4):774−783.

    ZHANG Jinpeng,LIU Limin,LIU Chuanxiao,et al. Application of bolt-grouting reinforcement for broken surrounding rock based on prestressed bolt and self-stress grouting[J]. Journal of Mining & Safety Engineering,2021,38(4):774−783.

    [2]

    LIANG C,ZHAO P Q,ZOU H H,et al. Introducing fiber to enhance the mechanical properties and durability of polymer-modified cement-based coating[J]. Construction and Building Materials,2023,372:130842. doi: 10.1016/j.conbuildmat.2023.130842

    [3] 管学茂,张海波,杨政鹏,等. 高性能无机-有机复合注浆材料研究[J]. 煤炭学报,2020,45(3):902−910.

    GUAN Xuemao,ZHANG Haibo,YANG Zhengpeng,et al. Research of high performance inorganic-organic composite grouting materials[J]. Journal of China Coal Society,2020,45( 3):902−910.

    [4] 黄鑫,庞建勇,黄金坤,等. 聚丙烯纤维混凝土强度正交试验研究[J]. 硅酸盐通报,2019,38(4):1183−1190.

    HUANG Xin,PANG Jianyong,HUANG Jinkun,et al. Orthogonal test study on strength of polypropylene fiber concrete[J]. Bulletin of the Chinese Ceramic Society,2019,38(4):1183−1190.

    [5] 王春阳. 碳纤维布加固钢筋混凝土梁的抗弯试验研究[J]. 武汉理工大学学报,2009,31(8):91−93. doi: 10.3963/j.issn.1671-4431.2009.08.023

    WANG Chunyang. Research on the resist bend of carbon fiber cloth reinforce ferroconcrete girder[J]. Journal of Wuhan University of Technology,2009,31(8):91−93. doi: 10.3963/j.issn.1671-4431.2009.08.023

    [6] 郭荣鑫,郭佳栋,颜峰,等. 聚丙烯纤维轻骨料混凝土力学性能及破坏机理研究[J]. 硅酸盐通报,2019,38(5):1323−1330.

    GUO Rongxin,GUO Jiadong,YAN Feng,et al. Investigation on mechanical properties and failure mechanism of polypropylene fiber reinforced lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society,2019,38(5):1323−1330.

    [7]

    MAŁEK M,JACKOWSKI M,ŁASICA W,et al. Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on Portland cement[J]. Materials,2020,13(8):1827. doi: 10.3390/ma13081827

    [8] 沈文峰,王亮,徐颖,等. 冲击荷载下聚丙烯纤维水泥砂浆力学特性研究[J]. 煤炭科学技术,2022,50(8):68−74.

    SHEN Wenfeng,WANG Liang,XU Ying,et al. Study on mechanical properties of polypropylene fiber cement mortar under impact load[J]. Coal Science and Technology,2022,50(8):68−74.

    [9] 任青阳,张勇,许虎,等. 砂浆中聚丙烯纤维掺量对预应力锚杆锚固性能影响研究[J]. 三峡大学学报(自然科学版),2020,42(6):61−67.

    REN Qingyang,ZHANG Yong,XU Hu,et al. Study on the influence of content of polypropylene fiber in mortar on the anchoring performance of anchor bolt[J]. Journal of China Three Gorges University (Natural Sciences),2020,42(6):61−67.

    [10]

    AHMAD J,BURDUHOS-NERGIS D D,ARBILI M M,et al. A review on failure modes and cracking behaviors of polypropylene fibers reinforced concrete[J]. Buildings,2022,12(11):1951. doi: 10.3390/buildings12111951

    [11]

    NAJAF E,ABBASI H. Impact resistance and mechanical properties of fiber-reinforced concrete using string and fibrillated polypropylene fibers in a hybrid form[J]. Structural Concrete,2023,24(1):1282−1295. doi: 10.1002/suco.202200019

    [12]

    RAMANA P V,SURENDRANATH A. Assessment of endurance and microstructural properties effect on polypropylene concrete[J]. Materials Today:Proceedings,2022,52:2184−2191.

    [13]

    SHEN D J,LIU C,LUO Y Y,et al. Early-age autogenous shrinkage,tensile creep,and restrained cracking behavior of ultra-high-performance concrete incorporating polypropylene fibers[J]. Cement and Concrete Composites,2023,138:104948. doi: 10.1016/j.cemconcomp.2023.104948

    [14]

    MA R Q,WANG M Y,LI X P,et al. Experimental investigation on dynamic mechanical properties of sandy clay treated with alkali-activated metakaolin cement and discrete polypropylene fibers[J]. Underground Space,2022,7(6):1036−1055. doi: 10.1016/j.undsp.2022.01.006

    [15]

    RASHAD A M. The effect of polypropylene,polyvinyl-alcohol,carbon and glass fibres on geopolymers properties[J]. Materials Science and Technology,2019,35(2):127−146. doi: 10.1080/02670836.2018.1514096

    [16]

    WAGNER T,KULIK D A,HINGERL F F,et al. Gem-selektor geochemical modeling package:TSolMod library and data interface for multicomponent phase models[J]. The Canadian Mineralogist,2012,50(5):1173−1195. doi: 10.3749/canmin.50.5.1173

    [17]

    LOTHENBACH B,KULIK D A,MATSCHEI T,et al. Cemdata18:a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials[J]. Cement and Concrete Research,2019,115:472−506. doi: 10.1016/j.cemconres.2018.04.018

    [18]

    YU P,KIRKPATRICK R J,POE B,et al. Structure of calcium silicate hydrate (C-S-H):near-,mid-,and far-infrared spectroscopy[J]. Journal of the American Ceramic Society,1999,82(3):742−748. doi: 10.1111/j.1151-2916.1999.tb01826.x

    [19]

    BERAN A,VOLL D,SCHNEIDER H. Dehydration and structural development of mullite precursors:an FTIR spectroscopic study[J]. Journal of the European Ceramic Society,2001,21(14):2479−2485. doi: 10.1016/S0955-2219(01)00265-5

    [20] 王晨宇,韦经杰,龙武剑,等. 纤维取向分布对水泥基复合材料力学性能的影响及其评价方法的研究进展[J]. 材料导报,2022,36(15):52−64.

    WANG Chenyu,WEI Jingjie,LONG Wujian,et al. Review on the effect of fiber orientation distribution on mechanical performance of cement-based composites and its evaluated methods[J]. Materials Reports,2022,36(15):52−64.

  • 期刊类型引用(39)

    1. 白喜梅. 复杂水文地质条件下矿井水害综合防治技术研究. 西部探矿工程. 2024(01): 53-55 . 百度学术
    2. 董凯. 综采工作面沿空掘巷小煤柱巷帮注浆加固技术实践. 晋控科学技术. 2024(01): 46-48+54 . 百度学术
    3. 常达. 永定庄煤业煤层充水评价与水害防治技术研究. 煤炭与化工. 2024(02): 87-91 . 百度学术
    4. 王路法,孟华,刘昆鹏. 煤矿矿井水害隐蔽致灾因素识别与危险性分析. 煤炭技术. 2024(07): 179-182 . 百度学术
    5. 廖正吒. 福建某县泄洪隧洞工程地质及水文地质条件分析. 工程技术研究. 2024(10): 10-12 . 百度学术
    6. 孟红伟,岳俊超,张平卿,王怀,习通,何江根,王子涵,王心义. 帷幕注浆封堵寒武系灰岩导水通道效果定量判识. 能源与环保. 2024(07): 87-97 . 百度学术
    7. 刘大金,练日锋,蒋亚萍,章爱卫,覃佳肖,刘圣荣. 云南某铅锌矿井巷组合钻孔注浆堵水技术研究. 采矿技术. 2024(04): 218-225 . 百度学术
    8. 陈贤良,冯西会. 相控砂体展布与富水规律研究——以文家坡井田延安组二段为例. 湖南科技大学学报(自然科学版). 2024(02): 1-8 . 百度学术
    9. 王颖,刘郑秋,李成帅,白锦琳,杨文杰,赵勇. 基于ARIMA-GM模型的矿井涌水量预测. 煤炭技术. 2024(09): 154-157 . 百度学术
    10. 周全超,刘玲,李继升,殷裁云. 基于多种解析法和数值法求解巨厚砂岩水文地质参数. 煤炭科学技术. 2024(S1): 174-182 . 本站查看
    11. 吴本林,陈浩,杨龙高,黄家兴,蔡红. 基于层次分析法和模糊评价法的防治水技术. 陕西煤炭. 2024(10): 153-157+184 . 百度学术
    12. 魏新,鹿存金,侯小宇,刘安福,柴金城. 基于瞬变电磁的岩溶发育及富水分区特征研究. 能源与环保. 2024(09): 102-109 . 百度学术
    13. 李果,陈军涛,傅子群,马庆. 含水层空间定向封存二氧化碳治理水害技术探讨. 矿业研究与开发. 2024(12): 177-185 . 百度学术
    14. 李文文. 麦地掌煤矿水文地质特征及充水因素分析. 煤炭与化工. 2024(12): 48-53 . 百度学术
    15. 管强盛. 煤矿井下防治水定向钻孔定点注浆封隔器设计与应用. 煤炭工程. 2024(12): 1-6 . 百度学术
    16. 贾昱琦. 浅析煤矿地质测量防治水害工作. 矿业装备. 2023(02): 119-121 . 百度学术
    17. 赵恰,王军. 复杂富水含矿层水文地质特征及防治水技术研究. 黄金. 2023(04): 24-27 . 百度学术
    18. 张文泉,朱先祥,李松,刘勇,吴绪南,陈兵. 橡胶-粉煤灰基矿井底板裂隙注浆材料性能的试验研究. 煤炭科学技术. 2023(05): 1-10 . 本站查看
    19. 吕情绪,狄军贞,李果,林鑫. 高强度采矿活动对地下水影响的数值模拟研究. 煤炭科学技术. 2023(05): 193-199 . 本站查看
    20. 杨华奎. 基于瞬变电磁法的陇东煤矿采空区水文地质勘探技术研究. 地质与勘探. 2023(04): 883-890 . 百度学术
    21. 耿春雷,董阳,左然芳,马宁,巩思宇,张栋. 煤矿注浆技术研究现状与展望. 工业建筑. 2023(S1): 416-418 . 百度学术
    22. 侯恩科,夏冰冰,吴章涛,荣统瑞. 基于CEEMDAN-BO-BiGRU的矿井涌水量预测研究. 科学技术与工程. 2023(28): 12012-12019 . 百度学术
    23. 罗清虎,宋明琦,马晓霞. 水文地质条件下非点源污染负荷控制方法研究. 环境科学与管理. 2023(10): 86-90 . 百度学术
    24. 任邓君,蔺成森,霍超,马家辉,许南南. 高家堡煤矿洛河组含水层水文地质特征及水害防治. 陕西煤炭. 2023(06): 119-124+135 . 百度学术
    25. 周全超,郑洁铭,傅耀军,殷裁云,郝娇阳. “释水—断面流”法在矿井涌水量预测中的应用——以鄂尔多斯盆地南缘核桃峪煤矿为例. 煤炭科学技术. 2023(S1): 310-317 . 本站查看
    26. 侯超鹏. 西冯街煤业矿井水文地质特征与防治水措施. 江西煤炭科技. 2022(01): 145-146+151 . 百度学术
    27. 李丹. 瞬变电磁法探测断层构造的有效性分析. 能源与环保. 2022(03): 93-100 . 百度学术
    28. 石志远. 复合强富水含水层帷幕薄弱带识别方法与靶向加固技术. 煤炭工程. 2022(04): 57-61 . 百度学术
    29. 李晋华. 矿井综合防治水技术应用分析. 矿业装备. 2022(02): 82-83 . 百度学术
    30. 靳玉琪,龙建辉,任杰,倪向龙. 基于水化学特征的矿区填土地基水害水源分析. 煤炭科学技术. 2022(04): 173-180 . 本站查看
    31. 李建林,高培强,王心义,赵帅鹏. 基于混沌-广义回归神经网络的矿井涌水量预测. 煤炭科学技术. 2022(04): 149-155 . 本站查看
    32. 王毅,张文. 建庄煤矿防治水管理技术体系及其应用. 陕西煤炭. 2022(04): 206-208+231 . 百度学术
    33. 丁同福,汪敏华,刘满才,朱昌淮,文东明,陈晓雷. 叠层多分支水平井精准建造陷落柱堵水塞技术. 煤炭科学技术. 2022(07): 244-251 . 本站查看
    34. 李建华. 水文地质极复杂型矿井防治水成套技术研究. 煤炭科学技术. 2022(S1): 200-206 . 本站查看
    35. 李冲,闫兴达. 强径流区工作面构造精细探测及水害防治. 中国煤炭地质. 2022(S1): 36-39+143 . 百度学术
    36. 苗贺朝,王海,王晓东,王皓,许刚刚. 粉煤灰基防渗注浆材料配比优选及其性能试验研究. 煤炭科学技术. 2022(09): 230-239 . 本站查看
    37. 秦泰山. 复杂水文地质条件下的矿井防治水技术应用. 能源与节能. 2022(11): 213-215 . 百度学术
    38. 卓聪志. 首采区域内上覆含水层的富水特征及采区涌水量计算. 山西化工. 2022(07): 112-114 . 百度学术
    39. 申张梅. 水文地质条件复杂矿井防治水技术. 内蒙古煤炭经济. 2021(06): 194-195 . 百度学术

    其他类型引用(7)

图(21)  /  表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  5
  • PDF下载量:  32
  • 被引次数: 46
出版历程
  • 收稿日期:  2023-09-07
  • 网络出版日期:  2024-06-17
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回