高级检索

基于内置光纤/导光管反应器的微藻固碳减排研究

夏奡, 任柯欣, 张敬苗, 黄云, 朱贤青, 朱恂, 廖强

夏 奡,任柯欣,张敬苗,等. 基于内置光纤/导光管反应器的微藻固碳减排研究[J]. 煤炭科学技术,2024,52(2):329−337

. DOI: 10.12438/cst.2024-0095
引用本文:

夏 奡,任柯欣,张敬苗,等. 基于内置光纤/导光管反应器的微藻固碳减排研究[J]. 煤炭科学技术,2024,52(2):329−337

. DOI: 10.12438/cst.2024-0095

XIA Ao,REN Kexin,ZHANG Jingmiao,et al. Promotion of carbon fixation and emission reduction by microalgae with optical fiber/light guide tubes[J]. Coal Science and Technology,2024,52(2):329−337

. DOI: 10.12438/cst.2024-0095
Citation:

XIA Ao,REN Kexin,ZHANG Jingmiao,et al. Promotion of carbon fixation and emission reduction by microalgae with optical fiber/light guide tubes[J]. Coal Science and Technology,2024,52(2):329−337

. DOI: 10.12438/cst.2024-0095

基于内置光纤/导光管反应器的微藻固碳减排研究

基金项目: 

国家自然科学基金资助项目(52021004,52236009);重庆市自然科学基金资助项目(cstc2021jcyj-msxmX0062)

详细信息
    作者简介:

    夏奡: (1986—),男,重庆人,教授,博士生导师。E-mail:aoxia@cqu.edu.cn

  • 中图分类号: X701

Promotion of carbon fixation and emission reduction by microalgae with optical fiber/light guide tubes

Funds: 

National Natural Science Foundation of China (52021004, 52236009); Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0062)

  • 摘要:

    我国燃煤电厂每年排放CO2超过57亿 t,为保障双碳目标如期实现,必须大幅降低燃煤电厂的CO2排放。微藻固碳通过高效的光合作用吸收CO2转化为生物质,是极具潜力的燃煤电厂减碳技术,但目前微藻固碳性能严重受限于反应器内光传输。导光管可灵活调节反应器内光分布,而光纤可集中传输光线且光损耗低,因此提出光纤/导光管微藻光生物反应器,扩大藻液受光面积,增加藻细胞色素的光捕集,促进微藻光合固碳。利用光学仿真软件对光纤/导光管内传输的光线进行追踪,获得了光纤/导光管管壁的光强分布。在不同反应器、输入光能条件下进行微藻培养实验,获得了微藻生物量、固碳速率与叶绿素含量的变化趋势,分析了内置光纤/导光管对微藻固碳的影响规律。结果表明:平面末端的光纤射出光的光强在导光管侧30~140 mm内迅速下降,导光管发光范围集中。在导光管底部添加锥形反光件反射抵达管底的透射光、并设计阶梯型光纤使输入光由不同阶梯分级发出,可使微藻光生物反应器内光分布更加均匀,反应器内部远离光源区域的藻细胞可以有效接受光能进行光合固碳。当光能输入为3.3 W/L时,含两级阶梯结构光纤和锥形反光件的导光管管侧表面最低光强为47 μmol/(m2·s),平均光强达64 μmol/(m2·s),较无光纤仅顶部给光的导光管侧面平均光强提高了2.6倍。微藻在插入阶梯型光纤的光生物反应器(SF-PBR)培养7 d后生物量达到1.9 g/L,比在插入平面端光纤的光生物反应器(FF-PBR)中培养的生物量高46.2%,比仅顶部受光的光生物反应器(LG-PBR)中培养的生物量高111.1%。当提升光源输入至5.0 W/L,微藻培养7 d后的生物量高达2.8 g/L,培养期间保持高固碳速率(608.3 mg/(L·d)),比对照组LG-PBR的固碳速率提高1.9倍。

    Abstract:

    China’s coal-fired power plants emit over 5.7 billion tons of CO2 annually. To realize the dual carbon goals in time, it is necessary to reduce the carbon emissions of coal-fired power plants. Microalgae carbon fixation can efficiently absorb CO2 through photosynthesis and convert it into biomass, which is a highly promising technology for carbon reduction in coal-fired power plants. Light guide tubes can flexibly change the light distribution in a photobioreactor, while optical fibers can transmit light centrally with low light loss. Therefore, a microalgae photobioreactor with an optical fiber/light guide tube is proposed to expand the light-receiving area of the microalgae suspension, increase the light-harvesting of microalgal cells, and promote carbon fixation via microalgae photosynthesis. The optical simulation software was used to trace the propagation of light in the optical fiber/light guide tube, and the light intensity distribution of the tube wall was obtained. Microalgae cultivation experiments were conducted in various photobioreactors and under different input light energy conditions. The change trends of biomass yield, carbon sequestration rate, and chlorophyll content were obtained, and the impact of built-in optical fiber /light guide tubes on carbon fixation via microalgae was investigated. Results indicated that the light intensity emitted from the optical fiber terminal decreased precipitously from 30 mm to 140 mm along the side of the light guide tube. Additionally, the tube exhibited a concentrated light-emitting range. Adding a conical reflector to reflect the transmitted light at the tube bottom and designing a stepped optical fiber to emit input light from different steps can optimize the light-emitting effect of the light guide tube and make the light distribution in the microalgae photobioreactor more uniform, so that the microalgal cells far away from the light source area can receive the light energy to photosynthesize and fix carbon. At a light input of 3.3 W/L, the minimum light intensity on the side surface of the light guide comprising a two-stage stepped optical fiber and conical reflector was 47 μmol/(m2·s). The average light intensity was 64 μmol/(m2·s), representing a 2.6-fold increase compared to the light guide tube lacking both the optical fiber and any enhancements beyond its top section. After seven days of cultivation, the microalgae concentration in the stepped fiber photobioreactor (SF-PBR) could reach 1.9 g/L, which was 46.2% higher than that of the photobioreactor inserted with flat-end fiber optic light guide (FF-PBR) and 111.1% higher than that of the photobioreactor with only top-fed light (LG-PBR). When the light input was escalated to 5.0 W/L, a high microalgae concentration of 2.8 g/L was achieved at 7 d. Meanwhile, the average carbon sequestration rate of 608.3 mg/(L·d) was obtained, exhibiting 1.9-fold augmentation compared to the control LG-PBR.

  • 图  1   内置光纤/导光管的封闭式微藻光生物反应器

    Figure  1.   Microalgae photobioreactor with different built-in optical fiber/light guide tubes

    图  2   3种光生物反应器示意

    Figure  2.   Schematic of three types of photobioreactors

    图  3   不同光纤/导光管的侧面光强仿真结果

    Figure  3.   Surface light intensity simulation results of different optical fiber/light guide tubes

    图  4   不同光纤/导光管的光线仿真结果

    Figure  4.   Ray-tracing simulation results of different optical fiber/light guide tubes

    图  5   不同导光方式与输入光能的光纤/导光管光线仿真与实际测量结果

    Figure  5.   Simulation and actual light intensities of optical fiber/light guide tubes with different fiber structures and input light energies

    图  6   不同导光方式对微藻生长的影响

    Figure  6.   Effects of different light guiding methods on the growth of microalgae

    图  7   不同输入光能对微藻生长的影响

    Figure  7.   Effect of different input light energies on the growth of microalgae

  • [1]

    IEA. Global Energy Review:CO2 Emissions in 2021 [Z]. 2022.

    [2] 黄 云,彭红艳,富经纬,等. 微藻光合减排燃煤电厂烟气CO2及资源化利用研究进展[J]. 洁净煤技术,2022,28(9):55−68.

    HUANG yun PENG hongyan,FU jingwei,et al. Progress on the reduction and utilization of CO2 in flue gas from coal-fired power plant by microalgae photosynthesis[J]. Clean Coal Technology,2022,28(9):55−68.

    [3] 王 鼎,张 杰,杨伯伦,等. 直接空气捕集CO2典型工艺分析及技术经济研究进展[J]. 煤炭科学技术,2023,51(S1):215−221.

    WANG ding,ZHANG jie,YANG bolun,et al. Research progress of typical process analysis and techno-economic research on direct air capture of carbon dioxide[J]. Coal Science and Technology,2023,51(S1):215−221.

    [4] 李璐蕊,叶 舣,密建国,等. 膜吸收CO2捕集技术的研究[J]. 现代化工,2023,43(11):15−19.

    LI lurui,YE hang,MI jianguo,et al. Study on CO2 capture technology by membrane absorption[J]. Modern Chemical Industry,2023,43(11):15−19.

    [5]

    BARBOZA-Rodríguez R,RODRÍGUEZ-Jasso R M,Rosero-Chasoy G,et al. Photobioreactor configurations in cultivating microalgae biomass for biorefinery[J]. Bioresource Technology,2024,394:130208. doi: 10.1016/j.biortech.2023.130208

    [6]

    LI S,LI X,HO S H. How to enhance carbon capture by evolution of microalgal photosynthesis?[J]. Separation and Purification Technology,2022,291:120951. doi: 10.1016/j.seppur.2022.120951

    [7] 万伟华,程 军,郭王彪. 我国微藻固定烟气CO2潜力时空格局分析[J]. 煤炭科学技术,2022,50(6):107−116.

    WAN weihua,CHEN jun,GUO wangbiao. Analysis on temporal and spatial pattern of CO2 fixation ability from coal-fired flue gas fixed by microalgae in China[J]. Coal Science and Technology,2022,50(6):107−116.

    [8] 夏 奡,叶文帆,富经纬,等. 燃煤烟气微藻固碳减排技术现状与展望[J]. 煤炭科学技术,2020,48(1):108−119.

    XIA ao,YE Wenfan,FU jingwei,et al. Current situation and prospect of carbon fixation and emission reduction technology for coal-fired flue gas by microalgae[J]. Coal science and Technology,2020,48(1):108−119.

    [9]

    KRUJATZ F,ILLING R,KRAUTWER T,et al. Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics[J]. Biotechnology and Bioengineering,2015,112(12):2439−2449. doi: 10.1002/bit.25667

    [10]

    COLLESELLI L,SIEWERT B,VRABL P,et al. Optical simulations in life-sciences:Benefiting from ray-tracing in biotechnology and photobiology[J]. Optics Communications,2024,552:130028. doi: 10.1016/j.optcom.2023.130028

    [11]

    SHAREEFDEEN Z,ELKAMEL A,BABAR Z B. Recent developments on the performance of algal bioreactors for CO2 removal:focusing on the light intensity and photoperiods [J] 2023,12(1):10.3390/biotech12010010.

    [12]

    NAĎ M,BRUMMER V,LOŠÁK P,et al. Waste-to-energy plants flue gas CO2 mitigation using a novel tubular photobioreactor while producing Chlorella algae[J]. Journal of Cleaner Production,2023,385:135721. doi: 10.1016/j.jclepro.2022.135721

    [13]

    YANG H,XIN X. CO2 capture and lipid production performance of microalgae in the S-shaped photobioreactor under different culture modes[J]. Enzyme and Microbial Technology,2023,165:110194. doi: 10.1016/j.enzmictec.2023.110194

    [14]

    PORTO B,F. C. V. SILVA T,GONÇALVES A L,et al. Tubular photobioreactors illuminated with LEDs to boost microalgal biomass production[J]. Chemical Engineering Journal,2022,435:134747. doi: 10.1016/j.cej.2022.134747

    [15]

    SUN Y,HUANG Y,LIAO Q,et al. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor[J]. Bioresource Technology,2016,207:31−38. doi: 10.1016/j.biortech.2016.01.136

    [16]

    RAHA H E,SHAFII M B,Roshandel R. Energy efficient cultivation of microalgae using phosphorescence materials and mirrors[J]. Sustainable Cities and Society,2018,41:449−454. doi: 10.1016/j.scs.2018.06.002

    [17]

    AHANGAR A K,YAQOUBNEJAD P,DIVSALAR K,et al. Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution[J]. Bioresource Technology,2023,387:129577. doi: 10.1016/j.biortech.2023.129577

    [18]

    ALLIL R C,MANCHEGO A,ALLIL A,et al. Solar tracker development based on a POF bundle and Fresnel lens applied to environment illumination and microalgae cultivation[J]. Solar Energy,2018,174:648−659. doi: 10.1016/j.solener.2018.09.061

    [19]

    WONDRACZEK L,GRÜNDLER A,REUPERT A,et al. Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of microalgae reactors[J]. Scientific Reports,2019,9(1):9600. doi: 10.1038/s41598-019-45955-w

    [20]

    LIAO Q,SUN Y,HUANG Y,et al. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor[J]. Bioresource Technology,2017,243:528−538. doi: 10.1016/j.biortech.2017.06.091

    [21]

    FU J,HUANG Y,XIA A,et al. How the sulfur dioxide in the flue gas influence microalgal carbon dioxide fixation:From gas dissolution to cells growth[J]. Renewable Energy,2022,198:114−122. doi: 10.1016/j.renene.2022.08.057

    [22]

    PENG H,HUANG Y,XIA A,et al. Revealing mechanism and influence of microalgae cells' periodical auto-agglomeration induced by high concentration of carbon dioxide[J]. Bioresource Technology,2023,382:129120. doi: 10.1016/j.biortech.2023.129120

    [23]

    LICHTENTHALER H K,BUSCHMANN C. Chlorophylls and carotenoids:Measurements and characterization by UV-Vis spectroscopy [J]. Current Protocols in Food Analytical Chemistry,2005:171−178.

    [24]

    COLLOS Y,MORNET F,SCIANDRA A,et al. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures[J]. Journal of Applied Phycology,1999,11(2):179−184. doi: 10.1023/A:1008046023487

    [25] 潘英俊. 光纤出射光的空间相干性[J]. 重庆大学学报(自然科学版),1991(2):8−14.

    PAN yingjun. Spatial coherence of light emitted from optical fiber[J]. Journal of Chongqing University,1991(2):8−14.

    [26]

    LI J Y,WANG S Y,NI Z Y,et al. Improving microalgal growth in column photobioreactor with internal light column[J]. Bioresource Technology Reports,2018,4:181−185. doi: 10.1016/j.biteb.2018.10.006

    [27]

    MALTSEV Y,MALTSEVA K,KULIKOVSKIY M,et al. Influence of light conditions on microalgae growth and content of lipids,carotenoids,and fatty acid composition[J]. Biology,2021,10(10):1060. doi: 10.3390/biology10101060

    [28]

    FERREIRA V S,PINTO R F,Sant'Anna C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus[J]. Journal of Applied Microbiology,2016,120(3):661−670. doi: 10.1111/jam.13007

    [29]

    RAO M,ZOU X,YE J,et al. Light conditions determine optimal CO2 concentrations for Nannochloropsis oceanica growth with carbon fixation[J]. ACS Sustainable Chemistry & Engineering,2022,10(27):8799−8814.

  • 期刊类型引用(39)

    1. 白喜梅. 复杂水文地质条件下矿井水害综合防治技术研究. 西部探矿工程. 2024(01): 53-55 . 百度学术
    2. 董凯. 综采工作面沿空掘巷小煤柱巷帮注浆加固技术实践. 晋控科学技术. 2024(01): 46-48+54 . 百度学术
    3. 常达. 永定庄煤业煤层充水评价与水害防治技术研究. 煤炭与化工. 2024(02): 87-91 . 百度学术
    4. 王路法,孟华,刘昆鹏. 煤矿矿井水害隐蔽致灾因素识别与危险性分析. 煤炭技术. 2024(07): 179-182 . 百度学术
    5. 廖正吒. 福建某县泄洪隧洞工程地质及水文地质条件分析. 工程技术研究. 2024(10): 10-12 . 百度学术
    6. 孟红伟,岳俊超,张平卿,王怀,习通,何江根,王子涵,王心义. 帷幕注浆封堵寒武系灰岩导水通道效果定量判识. 能源与环保. 2024(07): 87-97 . 百度学术
    7. 刘大金,练日锋,蒋亚萍,章爱卫,覃佳肖,刘圣荣. 云南某铅锌矿井巷组合钻孔注浆堵水技术研究. 采矿技术. 2024(04): 218-225 . 百度学术
    8. 陈贤良,冯西会. 相控砂体展布与富水规律研究——以文家坡井田延安组二段为例. 湖南科技大学学报(自然科学版). 2024(02): 1-8 . 百度学术
    9. 王颖,刘郑秋,李成帅,白锦琳,杨文杰,赵勇. 基于ARIMA-GM模型的矿井涌水量预测. 煤炭技术. 2024(09): 154-157 . 百度学术
    10. 周全超,刘玲,李继升,殷裁云. 基于多种解析法和数值法求解巨厚砂岩水文地质参数. 煤炭科学技术. 2024(S1): 174-182 . 本站查看
    11. 吴本林,陈浩,杨龙高,黄家兴,蔡红. 基于层次分析法和模糊评价法的防治水技术. 陕西煤炭. 2024(10): 153-157+184 . 百度学术
    12. 魏新,鹿存金,侯小宇,刘安福,柴金城. 基于瞬变电磁的岩溶发育及富水分区特征研究. 能源与环保. 2024(09): 102-109 . 百度学术
    13. 李果,陈军涛,傅子群,马庆. 含水层空间定向封存二氧化碳治理水害技术探讨. 矿业研究与开发. 2024(12): 177-185 . 百度学术
    14. 李文文. 麦地掌煤矿水文地质特征及充水因素分析. 煤炭与化工. 2024(12): 48-53 . 百度学术
    15. 管强盛. 煤矿井下防治水定向钻孔定点注浆封隔器设计与应用. 煤炭工程. 2024(12): 1-6 . 百度学术
    16. 贾昱琦. 浅析煤矿地质测量防治水害工作. 矿业装备. 2023(02): 119-121 . 百度学术
    17. 赵恰,王军. 复杂富水含矿层水文地质特征及防治水技术研究. 黄金. 2023(04): 24-27 . 百度学术
    18. 张文泉,朱先祥,李松,刘勇,吴绪南,陈兵. 橡胶-粉煤灰基矿井底板裂隙注浆材料性能的试验研究. 煤炭科学技术. 2023(05): 1-10 . 本站查看
    19. 吕情绪,狄军贞,李果,林鑫. 高强度采矿活动对地下水影响的数值模拟研究. 煤炭科学技术. 2023(05): 193-199 . 本站查看
    20. 杨华奎. 基于瞬变电磁法的陇东煤矿采空区水文地质勘探技术研究. 地质与勘探. 2023(04): 883-890 . 百度学术
    21. 耿春雷,董阳,左然芳,马宁,巩思宇,张栋. 煤矿注浆技术研究现状与展望. 工业建筑. 2023(S1): 416-418 . 百度学术
    22. 侯恩科,夏冰冰,吴章涛,荣统瑞. 基于CEEMDAN-BO-BiGRU的矿井涌水量预测研究. 科学技术与工程. 2023(28): 12012-12019 . 百度学术
    23. 罗清虎,宋明琦,马晓霞. 水文地质条件下非点源污染负荷控制方法研究. 环境科学与管理. 2023(10): 86-90 . 百度学术
    24. 任邓君,蔺成森,霍超,马家辉,许南南. 高家堡煤矿洛河组含水层水文地质特征及水害防治. 陕西煤炭. 2023(06): 119-124+135 . 百度学术
    25. 周全超,郑洁铭,傅耀军,殷裁云,郝娇阳. “释水—断面流”法在矿井涌水量预测中的应用——以鄂尔多斯盆地南缘核桃峪煤矿为例. 煤炭科学技术. 2023(S1): 310-317 . 本站查看
    26. 侯超鹏. 西冯街煤业矿井水文地质特征与防治水措施. 江西煤炭科技. 2022(01): 145-146+151 . 百度学术
    27. 李丹. 瞬变电磁法探测断层构造的有效性分析. 能源与环保. 2022(03): 93-100 . 百度学术
    28. 石志远. 复合强富水含水层帷幕薄弱带识别方法与靶向加固技术. 煤炭工程. 2022(04): 57-61 . 百度学术
    29. 李晋华. 矿井综合防治水技术应用分析. 矿业装备. 2022(02): 82-83 . 百度学术
    30. 靳玉琪,龙建辉,任杰,倪向龙. 基于水化学特征的矿区填土地基水害水源分析. 煤炭科学技术. 2022(04): 173-180 . 本站查看
    31. 李建林,高培强,王心义,赵帅鹏. 基于混沌-广义回归神经网络的矿井涌水量预测. 煤炭科学技术. 2022(04): 149-155 . 本站查看
    32. 王毅,张文. 建庄煤矿防治水管理技术体系及其应用. 陕西煤炭. 2022(04): 206-208+231 . 百度学术
    33. 丁同福,汪敏华,刘满才,朱昌淮,文东明,陈晓雷. 叠层多分支水平井精准建造陷落柱堵水塞技术. 煤炭科学技术. 2022(07): 244-251 . 本站查看
    34. 李建华. 水文地质极复杂型矿井防治水成套技术研究. 煤炭科学技术. 2022(S1): 200-206 . 本站查看
    35. 李冲,闫兴达. 强径流区工作面构造精细探测及水害防治. 中国煤炭地质. 2022(S1): 36-39+143 . 百度学术
    36. 苗贺朝,王海,王晓东,王皓,许刚刚. 粉煤灰基防渗注浆材料配比优选及其性能试验研究. 煤炭科学技术. 2022(09): 230-239 . 本站查看
    37. 秦泰山. 复杂水文地质条件下的矿井防治水技术应用. 能源与节能. 2022(11): 213-215 . 百度学术
    38. 卓聪志. 首采区域内上覆含水层的富水特征及采区涌水量计算. 山西化工. 2022(07): 112-114 . 百度学术
    39. 申张梅. 水文地质条件复杂矿井防治水技术. 内蒙古煤炭经济. 2021(06): 194-195 . 百度学术

    其他类型引用(7)

图(7)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  48
  • PDF下载量:  42
  • 被引次数: 46
出版历程
  • 收稿日期:  2023-12-19
  • 网络出版日期:  2024-02-26
  • 刊出日期:  2024-02-22

目录

    /

    返回文章
    返回