高级检索

煤层气异常成分的界定、分布及其成因研究进展

傅雪海, 许行行, 王强, 陈义林, 兰凤娟, 康俊强, 张宝鑫, 卢杰林

傅雪海,许行行,王 强,等. 煤层气异常成分的界定、分布及其成因研究进展[J]. 煤炭科学技术,2023,51(1):343−352

. DOI: 10.13199/j.cnki.cst.2022-1330
引用本文:

傅雪海,许行行,王 强,等. 煤层气异常成分的界定、分布及其成因研究进展[J]. 煤炭科学技术,2023,51(1):343−352

. DOI: 10.13199/j.cnki.cst.2022-1330

FU Xuehai,XU Hanghang,WANG Qiang,et al. Review of research on definition, distribution and causes of abnormal coalbed methane composition[J]. Coal Science and Technology,2023,51(1):343−352

. DOI: 10.13199/j.cnki.cst.2022-1330
Citation:

FU Xuehai,XU Hanghang,WANG Qiang,et al. Review of research on definition, distribution and causes of abnormal coalbed methane composition[J]. Coal Science and Technology,2023,51(1):343−352

. DOI: 10.13199/j.cnki.cst.2022-1330

煤层气异常成分的界定、分布及其成因研究进展

基金项目: 

国家自然科学基金面上资助项目(42072190);江苏省自然科学基金青年资助项目(BK20221149)

详细信息
    作者简介:

    傅雪海: (1965—),男,湖南衡阳人,教授,博士生导师,博士。E-mail: fuxuehai@163.com

  • 中图分类号: P618.13

Review of research on definition, distribution and causes of abnormal coalbed methane composition

Funds: 

National Natural Science Foundation of China (42072190); Natural Science Foundation of Jiangsu Province (BK20221149)

  • 摘要:

    前期对不同煤层气组分异常的成因进行了大量研究,但对不同组分异常浓度的界定尚无统一标准。为了阐明我国煤层气成分的分布特征及煤层气异常成分的浓度界限,基于实测和收集各煤阶储层煤层气成分(含气量达到煤层气储量评估规范DZ/T 0216—2020下限要求的煤层气井与煤田勘探钻孔)测试数据4 654个。统计表明我国煤层气中CH4、重烃气(C2+)、CO2、N2平均浓度分别为91.82%、0.85%、2.04%、5.19%,其中CH4浓度≥90%占77.44%。将煤层气中重烃气浓度大于5%、氮气/二氧化碳浓度大于10%、有害气体浓度超过《煤矿安全规程》规定的上限标准和稀有气体超过空气组成时划分为异常气体成分。基于此划分标准,统计表明我国煤层气中重烃气浓度>5%占5.16%、CO2浓度>10%占4.00%、N2浓度>10%占13.26%,准噶尔盆地南缘煤层气中氦气最高浓度达到0.97%。在上述研究的基础上,归纳总结了煤层气中异常成分/浓度的成因主要有煤化作用的阶段性、煤岩组分的差异性、硫酸盐还原作用、古风化壳及煤系外源气体迁入等。建议在今后的煤层气勘探中测全气体成分,开展CO2、N2异常煤层的气体解吸研究,确定煤系氦源岩,探讨烃-氦同源同储规律,分析煤系有机气与无机气的相互作用,综合研究地质构造、地下水流动、微生物及岩浆活动对气组分的改造作用,揭示不同气组分在不同地区运移、富集及保存的演化机制。研究成果对煤层气的开采工艺、煤矿安全生产和煤层气的利用均具有指导意义。

    Abstract:

    Although many studies focusing on the causes of the abnormal concentration of different coalbed methane (CBM) compositions were conducted, the unified standard for defining the abnormal concentration of different components is still missed.To clarify the distribution of CBM composition in China and determine the concentration boundary of abnormal composition, based on 4654 measured and collected gas data from coalfield exploration boreholes and CBM wells, which meet the lower limit of CBM reserves estimation in the standard DZ/T 0216—2020. The statistical results showed that the average concentration of CH4, C2+, CO2, and N2 in CBM in China were 91.82%、0.85%、2.04% and 5.19%, respectively, and the proportion of CH4 concentration greater than 90% was 77.44%. It can be defined as abnormal gas composition meeting any of the following four conditions: the C2+ concentration is greater than 5%; the N2/CO2 concentration is greater than 10%; the harmful gas concentration exceeds the upper limit of coal mine safety regulations; the rare gas concentration exceeds that in air. Based on the definition, the results showed that the proportion of C2+ concentration greater than 5% is 5.16% in China and the CO2 concentration greater than 10% accounts for 4.00%. Moreover, the proportion of N2 concentration greater than 10% is 13.26%, and the maximum helium concentration in the southern Junggar Basin reaches 0.97%. Based on the above results, the causes of abnormal CBM composition/concentrations are summarized as the stages of coalification, the differences in coal petrography, sulfate reduction effect, ancient weathering crust, and the migration of gas outside the source. In the subsequent CBM exploration, it is suggested to determine the total gas composition; conduct the study focusing on the gas desorption in coal reservoirs with abnormal CO2 and N2 concentration; determine the helium source rock of coal measures and discuss the law of hydrocarbon helium source and reservoirs to analyze the interaction between organic gas and inorganic gas of coal measures; comprehensively clarify the transformation of geological structure, groundwater flow, microorganism and magmatic activity on gas components to reveal the evolution mechanism of migration, enrichment, and preservation of different gas components in different regions. The results provide a guide for CBM exploitation, coal mine safety production, and CBM utilization.

  • 前期学者们普遍关注煤层气的数量,即煤层气的含量[1-3],对煤层气的质量,即煤层气的化学组成研究相对薄弱。煤层气储量评估规范DZ/T 0216—2020规定了各煤类煤层气含量的下限标准,即低煤阶煤(褐煤−长焰煤)空气干燥基含气量为1 m3/t、中煤阶煤(气煤−瘦煤)为4 m3/t、高煤阶煤(贫煤−无烟煤)为8 m3/t,对煤层气成分未作要求,只是规定参与煤层气储量估算的煤层气含量测定值中应剔除浓度超过10%的非烃类气体成分[4]

    自20世纪八十年代起国内外学者对煤层气(瓦斯)组分异常的关注度逐渐提高,早前研究多集中于煤矿瓦斯,如澳大利亚鲍文盆地2号煤矿CO2突出与断层密切相关[5]、Collinsville Oaky Creek 和 Southern Colliery 等煤矿H2S异常与岩浆岩活动相关[6]、波兰下西里西亚煤矿瓦斯CO2浓度达97%[7]、我国峰峰矿区羊东井田F19断层附近CO2浓度高达86.72%[8]、山东枣庄八一煤矿瓦斯中H2S达到0.50%、CO达到0.0045%[9]、辽宁马架子煤田煤层气中重烃浓度达54.07%[10],鄂东石楼区块煤层气研究中发现外围岩浆岩放射性元素异常衰变生成氦气通过断裂带进入煤层导致He异常[11]、美国Panhandle-Hugoton field深部幔源气通过岩浆运动或深大断裂运移并在浅部脱溶,形成N2或He气浓度异常[12]

    目前煤层气组分异常研究的思路较为相近,开展气组分异常区与正常区煤样自然解吸[13]、精细解吸[10]、热解模拟[14]及微生物产气模拟等[15],收集气态产物,进行含气组分及C、H、O、N、S、He、Ar及Ne等元素及同位素测试,确定不同气组分成因[16]。前期多关注煤岩生烃组分[17]、煤化程度[18]、煤的孔隙结构及其吸附能力[10]等对气成分的影响,发展趋势是综合考虑地质构造、地下水流动、微生物与岩浆活动及有机气与无机气的相互作用等对原生气组分的改造作用。

    煤层气化学组分影响煤层气的开发效果。新疆准南煤层气中CO2浓度高,开发效果相对较好[19],而云南恩洪向斜重烃浓度高、黑龙江鹤岗盆地N2浓度偏高,开发效果相对较差[17, 20]。H2S、CO2等灾害性气体异常影响煤矿安全生产。我国近百对矿井瓦斯中出现H2S、CO2气体异常(表1[21-23],多对矿井造成人员伤亡事故[9, 24]。此外,少数矿井还出现过N2气窒息事故[25]。煤层气中稀有气体具有重要的经济价值,尤其氦气是国防军工和高科技产业发展不可或缺的稀有战略性资源。煤田地质勘探阶段煤层气成分通常只测试常规成分,对煤层气中氩和氦等稀有气体大多没有进行测试。

    表  1  我国煤层气成分异常煤矿区或勘探区一览
    Table  1.  List of coal mine areas or exploration areas with abnormal CBM composition in China
    异常气体成分煤矿区或勘探区
    H2S新疆库车榆树田煤矿、奇台北山矿、沙湾县煤矿、铁厂沟煤矿、红沟煤矿、沙特布拉克煤矿、西山煤矿、乌东井田、碱沟煤矿、阜康煤矿区、大黄山煤矿、托克逊县煤矿、鄯善县七克台煤矿、吐鲁番七泉湖煤矿,内蒙阿拉善百灵煤矿、乌达煤矿区,宁夏石炭井煤矿、灵武双马煤矿,山西灵石铁新井田、太原炉峪口煤矿、古交西曲煤矿、长治慈林山煤矿、石圪节煤矿、晋城潘河煤层气田、凤凰山煤矿、晋牛煤矿,陕西神木柠条塔煤矿、华彬雅店煤矿、黄陵一号煤矿、彬长小庄煤矿、铜川崔家沟煤矿、澄合煤矿区,河北开平马家沟煤矿,山东枣庄八一矿、微山县崔庄煤矿、淄博亭南煤矿,河南鹤壁四矿、洛阳新安煤矿,四川宣汉乱石沟煤矿、华蓥山煤矿区、广安思源煤矿,湖南双峰新兴煤矿等
    CO2吉林营城煤矿、延边和龙煤矿,辽宁铁法大兴煤矿,新疆准南煤田,甘肃窑街煤矿区,山西大同煤矿区,河北宣东二矿、峰峰矿区羊东井田,安徽淮南矿区、淮北永固煤矿、北辰煤矿,贵州织纳煤田阿弓向斜
    N2黑龙江鹤岗煤矿区,江苏徐州垞城矿,山东枣庄柴里矿,河南平顶山一矿,安徽淮南矿区、淮北刘桥矿
    C2+黑龙江鸡西煤矿、山西临县煤矿区、河北开滦煤田、唐山矿、河南濮阳、安徽淮南矿区和淮北石台、湖南邵东牛马司矿、江苏东风煤矿、浙江长广煤田和长兴煤山、辽宁北票煤矿区和马架子徐大沟矿、四川盆地的中梁山、天府、南桐矿区、重庆松藻煤矿、贵州六盘水煤田、黔北煤田、云南恩洪矿区
    下载: 导出CSV 
    | 显示表格

    笔者统计了含气量达到煤层气储量评估规范DZ/T 0216—2020下限要求、煤层甲烷浓度大于50%的各煤级储层煤层气成分实测数据4654个,分别来自748口煤层气井和454口煤田勘探钻孔,其中低煤阶煤、中煤阶煤、高煤阶煤分别来自180、255、313口煤层气井和23、118、313口煤田勘探钻孔。数据分布于13省区,其中山西省数据3394个、新疆347个、贵州省322个、四川省162个、云南省124个、内蒙古112个、陕西省59个、安徽省45个、吉林省32个、黑龙江省30个、河北省14个、河南省7个、辽宁省6个。涵盖了东北、华北、华南、西北、滇藏全国五大聚煤区,也囊括了我国主要的聚煤期—晚石炭世−二叠纪、早−中侏罗世、晚白垩世,煤类齐全,包括褐煤、长焰煤、气煤、肥煤、焦煤、瘦煤、贫煤以及无烟煤。

    分析了我国煤层气成分的分布特征,确定了煤层气异常成分的浓度界限,在新疆准噶尔盆地南缘采集了12份气样专门进行了氦气及其同位素测试。

    煤层气成分包括烃类气体:甲烷、乙烷、丙烷、正丁烷、异丁烷、正戊烷、异戊烷(除甲烷外统称为重烃气体,下文简写为C2+);非烃类气体:氮气、二氧化碳、氢气、一氧化碳、二氧化硫、硫化氢以及微量的稀有气体(氦气、氖气、氩气、氪气等)。

    我国煤层气成分检测始于标准MT/T 77—1984[26],标准中规定气样浓度计算采用扣除空气法一直延用至今,MT/T 77—1994煤层气测定方法第一次把气体组分检测标准规定为“天然气的组成分析−气相色谱法GB/T 13610—1992”(MT/T 77—1984制订时还没有这个标准,最新标准为GB/T 13610—2020)[27-29]。煤田勘探钻孔煤样现场只解吸2 h[26-27],一般不取气样,送实验室解吸时取2次气样,一是煤样粉碎前脱气采取(常温或加热阶段采取),二是粉碎后加热脱气采取(用于计算煤样粉碎后各气成分的含量),取第一次气样所测气成分扣除空气后归一化计算煤层气成分。气样是通过排水取气获得的,一方面CO2溶解度大,溶于水,测值偏低,另一方面含饱和水煤层气样直接进样测试气组分,总组分达不到100%(水分占有一定比例,GB/T 13610—2003采用先脱水再进样测试解决了这一问题[29])。煤层气井现场在储层温度条件下解吸时间较长,持续到连续7 d每天平均解吸量小于或等于10 cm3时结束[30-32],现场用气囊或气瓶采集3个气样(GB/T 19559—2004分别在解吸后4、24、96 h采取[30],GB/T 19559—2008、GB/T 19559—2021分别在解吸后1、3、5 d采取[31-32]),煤层气各成分浓度取3次的平均值。现场解吸结束后送实验室将煤样粉碎后也是在储层温度条件下解吸,再采气样所测成分仅用于残余气各成分含量的计算。

    我国煤层气成分在垂向上的分布常沿用瓦斯的四带划分,即:CO2-N2带(CO2浓度:20%~10%,N2:80%~90%)、N2带(CH4<50%,N2>50%)、N2-CH4带(CH4:50%~70%,N2:50%~30%)及CH4带(CH4>80%)。

    煤层气中异常气体成分无明确的界限。考虑煤层气中干气与湿气的划分、煤层气储量估算对煤层气成分的要求、《煤矿安全规程》规定及稀有气体的空气组成来分别界定煤层气中重烃、氮气/二氧化碳、硫化氢/一氧化碳及氩气/氦气/氢气异常。

    煤层气中C2+浓度5%(体积分数,下同)是干气与湿气划分的界限,C2+浓度大于5%为湿气。因此,将煤层气中C2+浓度大于5%划分为C2+异常。煤层气资源/储量规范DZ/T 0216—2020规定参与煤层气储量估算的煤层气含量测定值中应剔除浓度超过10%的非烃类气体成分[4]。因此,将氮气/二氧化碳浓度大于10%划分为N2/CO2异常。此外,将有害气体浓度超过《煤矿安全规程》规定的上限标准(硫化氢浓度大于0.000 66%、一氧化碳浓度大于0.002 4%等)和稀有气体超过空气组成(氩气浓度大于0.934%、氦气浓度大于0.000 524%、氢气浓度大于0.000 5%)时称为异常浓度,超过上述浓度的煤层气成分称为异常成分。煤层气中异常成分/浓度赋存的区域称为煤层气成分/浓度异常区。

    基于山西、安徽、贵州、河南、河北、云南、内蒙古、新疆、四川、陕西、黑龙江等地含气量达到煤层气储量评估规范DZ/T 0216—2020下限要求的各煤阶储层4 654个煤层气成分测试数据(煤层埋深介于96.3~1 448.0 m之间),统计分析表明实测

    CH4、C2+、CO2、N2平均浓度分别为91.82%、0.85%、2.04%、5.19%,CH4浓度≥90%占77.44%,<60%仅占2.81%;C2+浓度<1%占85.32%,≥5%占5.16%;CO2浓度<5%占92.46%,≥10%占4.00%;N2浓度<5%占71.21%,≥10%占13.26%。(表2图1)。

    表  2  我国煤层气主要成分分布频率统计
    Table  2.  Statistical on distribution frequency of major composition in CBM in China
    气体成分分布参数
    CH4浓度区间/%<6060~7070~8080~8585~90≥90
    样品数1311211732293963604
    分布频率/%2.812.63.724.928.5177.44
    C2+浓度区间/%<11~22~44~88~12≥12
    样品数39711502162124758
    分布频率/%85.323.224.644.561.011.25
    CO2浓度区间/%<55~1010~1515~2020~25≥25
    样品数430316555414545
    分布频率/%92.463.551.180.870.970.97
    N2浓度区间/%<55~1010~1515~2020~25≥25
    样品数331472326215343159
    分布频率/%71.2115.545.633.290.913.42
    下载: 导出CSV 
    | 显示表格
    图  1  煤层气主要成分分布频率直方图
    Figure  1.  Distribution frequency of major composition in CBM

    美国不同盆地不同煤阶煤的985个煤层气样中,CH4平均浓度为93.2%,C2+为2.6%,CO2为3.1%,N2为1.1%[33],C2+平均浓度高于我国,N2低于我国,CH4与CO2相差不大。

    煤层气中C2+异常的成因有煤化作用阶段[34]、生气母质—显微煤岩组分[35-37]、油型气混入[38-39]、死孔封闭效应[40]等。国内外煤层气C2+浓度以 Ro,max=1.2%为中心随煤阶增加呈正态分布,异常集中分布在 Ro,max为0.6%~1.7%[16, 41-56]图2),占比达到60%以上。部分无烟煤(Ro,max > 2.5%)残余气中出现C2+异常,如在我国黔西织纳煤田文家坝、大冲头等井田,高浓度C2+集中分布在Ro,max 介于2.8%~3.8%的高煤阶煤中,浓度高达15%以上,最高可达90%(图3)。在我国江西乐平、安徽广德、浙江长兴、江苏吴县树皮残植煤富集区普遍出现C2+异常[57],在苏南锡澄虞含煤区C2+浓度达到21.11%[58],云南恩洪向斜C2+异常区呈3条北西-南东向的带状产出[36]

    图  2  国内外煤层气重烃浓度与煤阶的关系
    Figure  2.  Relationship between heavy hydrocarbon concentration and coal rank in China and abroad

    CO2来源于煤层埋藏过程中有机质的脱羧反应[34]、有机质的细菌氧化反应[59]、煤层自燃[60]、与烧变岩有关的地下水溶解改造[61]、岩石化学作用、构造动力分解[62]、岩浆侵入与岩浆热力分解、自深部岩浆房或上地幔沿深大断裂运移并侵入煤系[63]等(图4)。

    图  4  煤层气中二氧化碳来源示意
    Figure  4.  Origin of carbon dioxide in CBM

    斯洛文尼亚Velenje盆地煤层气中CO2浓度异常区为构造封闭所致[64],准噶尔盆地南缘系CO2生成、积聚、地下水参与下CO2的差异溶解消耗、运移分馏、微生物后期改造等综合地质作用的结果[65],山西大同、甘肃窑街CO2浓度异常均与岩浆侵入煤层有关[23, 62]

    图  3  黔西织纳煤田煤层残余气中重烃浓度与煤阶的关系
    Figure  3.  Relationship between heavy hydrocarbon concentration in residual gas and coal rank in Zhina Coalfield, western Guizhou Province

    煤层气中N2来源于有机质的含氮组分在煤化作用各个阶段所生成[34]。在有机质未成熟阶段(Ro,max < 0.6%),N2主要通过微生物氨化作用生成[66];成熟至过成熟阶段(0.6%< Ro,max <2.0%),主要通过热氨化作用生成[67]。此外,部分地区N2异常源于古大气中的N2通过裂隙及地表水下渗[68]、部分放射性元素在衰变过程中产生或深部地幔中的气体运移至浅部或岩浆活动或岩石化学作用等(图5[69-71]

    图  5  煤层气中氮气来源示意
    Figure  5.  Origin of nitrogen in CBM

    黑龙江鹤岗盆地N2浓度异常区系受埋藏史控制的古风化壳的影响[20],江苏徐州垞城煤矿为煤层热演化生成的NH3被上覆红层中的Fe2O3氧化作用的结果[25];煤系灰岩下伏煤层气中CO2与N2浓度异常区是在地层抬升剥蚀、地下水溶蚀灰岩的共同作用下煤层气与灰岩溶蚀空间中CO2和N2长期交换所致[72],安徽淮南煤层气中CO2与N2浓度异常区是地层抬升剥蚀、煤系上覆基岩薄、后期新生界沉积巨厚、古大气持续下渗与煤层生物气、热成因气混合作用的结果[73]

    天然气中H2S异常有3种成因类型:生物成因、热化学成因和岩浆作用成因[74]。生物成因主要是微生物硫酸盐还原作用(BSR)[75],热化学成因有热化学分解(TDS)[76]和热化学硫酸盐还原作用(TSR)[77]。我国煤层气中BSR成因占46.43%,BSR与TSR或TDS的混合成因占25.00%(图6[21]

    图  6  我国煤层气中H2S异常各种成因占比
    Figure  6.  Proportion of causes of abnormal H2S in CBM in China

    山西潞安矿区石圪节煤矿H2S异常区位于逆断层下盘[78],山东枣庄八一煤矿H2S异常区出现在燕山晚期辉绿岩岩墙的一侧[9],新疆阜康矿区瓦斯中H2S异常煤矿多分布于逆冲推覆体的弧形构造部位和强烈构造煤发育区[79]

    天然气中氦气主要来自大气、与地幔有关的原始成因氦(3He)、与地壳中铀、钍的α衰变有关的放射性氦(4He)。通常以R/RaR=3He/4He,代表样品同位素比值,Ra代表大气3He/4He比值,约为1.4×10−6)指示氦气的来源。鄂尔多斯盆地东缘石楼西煤层气区块氦气浓度介于0.02%~0.23%,R/Ra介于0.01~0.02[11];新疆准南实测氦气浓度介于0~0.97%,乌鲁木齐河东地区R/Ra介于0.01~0.05[65] 、后峡煤层气区块R/Ra均在0.02左右;甘肃宝积山煤矿R/Ra介于0.02~0.03[80]、黑龙江鹤岗盆地R/Ra为0.07[20],均显示典型的壳源气特征。而美国圣胡安盆地煤系气中氦气浓度高达7.27%~8.92%,确定为幔源成因气[81-82]

    鄂尔多斯盆地东缘煤系气中氦气异常区仅出现在离石断裂带与柳林尖家沟燕山期金伯利岩带和紫金山碱性岩体西侧的山西石楼西区块[69],圣胡安盆地氦气异常也与岩浆侵入有关[71],均受构造演化史控制。

    我国大规模煤田地质勘探集中于20世纪七、八十年代,当时测的煤层瓦斯就是煤层气,大多未进行H2S、He等成分测试,建议在今后的煤炭资源勘探和煤层气勘探中采用天然气的组成分析——气相色谱法GB/T 13610—2020测全气体成分。

    CO2-ECBM与N2-ECBM实践证明对煤层气增产有效果,原位储层煤层气中CO2异常的新疆准南阜康矿区煤层气开发效果很好,但安徽淮南、黑龙江鹤岗地区CO2、N2异常煤层气开发效果不理想,建议加强煤层气井排采气成分的连续检测及CO2、N2异常煤层的气体解吸研究。

    分析煤系自然伽玛测井响应特征,研究放射性异常煤(岩)层的铀、钍含量,确定煤系氦源岩,阐明氦源岩/储集层的垂向叠置特征及横向变化规律;研究煤系气中He与N2的关系,探讨烃-氦同源同储规律。

    分析煤系中烃源岩与非烃源岩的生物化学、热化学与水化学产气作用、烃类与非烃类气体的地球化学特征,研究同位素分馏效应和交换反应、流体循环-稀释作用、水岩氧化-还原作用、生物代谢-衍生作用及有机气与无机气的相互作用,阐明煤层气中重烃、氧化物气体、硫化氢、惰性气体等单一气体或多组分气体浓度异常特征,揭示煤层气异常成分的成因。

    综合研究地质构造、地下水流动、微生物及岩浆活动对气组分的改造作用,揭示不同气组分在不同地区运移、富集及保存的演化机制。

    1)界定煤层气中C2+、CO2、N2、H2S、He浓度分别超过5%、10%、10%、0.00066%、0.000524%时为异常气体成分。

    2)我国煤层气中CH4、C2+、CO2、N2平均浓度分别为91.82%、0.85%、2.04%、5.19%,C2+、CO2、N2异常占比分别为5.16%、4.00%和13.26%。

    3)煤层气中C2+异常主要与煤化作用和煤岩组成有关,CO2、He异常主要受岩浆岩和断裂构造控制,N2异常与古风化壳有关,H2S异常主要为微生物硫酸盐还原作用和热化学硫酸盐还原作用的结果。

  • 图  1   煤层气主要成分分布频率直方图

    Figure  1.   Distribution frequency of major composition in CBM

    图  2   国内外煤层气重烃浓度与煤阶的关系

    Figure  2.   Relationship between heavy hydrocarbon concentration and coal rank in China and abroad

    图  4   煤层气中二氧化碳来源示意

    Figure  4.   Origin of carbon dioxide in CBM

    图  3   黔西织纳煤田煤层残余气中重烃浓度与煤阶的关系

    Figure  3.   Relationship between heavy hydrocarbon concentration in residual gas and coal rank in Zhina Coalfield, western Guizhou Province

    图  5   煤层气中氮气来源示意

    Figure  5.   Origin of nitrogen in CBM

    图  6   我国煤层气中H2S异常各种成因占比

    Figure  6.   Proportion of causes of abnormal H2S in CBM in China

    表  1   我国煤层气成分异常煤矿区或勘探区一览

    Table  1   List of coal mine areas or exploration areas with abnormal CBM composition in China

    异常气体成分煤矿区或勘探区
    H2S新疆库车榆树田煤矿、奇台北山矿、沙湾县煤矿、铁厂沟煤矿、红沟煤矿、沙特布拉克煤矿、西山煤矿、乌东井田、碱沟煤矿、阜康煤矿区、大黄山煤矿、托克逊县煤矿、鄯善县七克台煤矿、吐鲁番七泉湖煤矿,内蒙阿拉善百灵煤矿、乌达煤矿区,宁夏石炭井煤矿、灵武双马煤矿,山西灵石铁新井田、太原炉峪口煤矿、古交西曲煤矿、长治慈林山煤矿、石圪节煤矿、晋城潘河煤层气田、凤凰山煤矿、晋牛煤矿,陕西神木柠条塔煤矿、华彬雅店煤矿、黄陵一号煤矿、彬长小庄煤矿、铜川崔家沟煤矿、澄合煤矿区,河北开平马家沟煤矿,山东枣庄八一矿、微山县崔庄煤矿、淄博亭南煤矿,河南鹤壁四矿、洛阳新安煤矿,四川宣汉乱石沟煤矿、华蓥山煤矿区、广安思源煤矿,湖南双峰新兴煤矿等
    CO2吉林营城煤矿、延边和龙煤矿,辽宁铁法大兴煤矿,新疆准南煤田,甘肃窑街煤矿区,山西大同煤矿区,河北宣东二矿、峰峰矿区羊东井田,安徽淮南矿区、淮北永固煤矿、北辰煤矿,贵州织纳煤田阿弓向斜
    N2黑龙江鹤岗煤矿区,江苏徐州垞城矿,山东枣庄柴里矿,河南平顶山一矿,安徽淮南矿区、淮北刘桥矿
    C2+黑龙江鸡西煤矿、山西临县煤矿区、河北开滦煤田、唐山矿、河南濮阳、安徽淮南矿区和淮北石台、湖南邵东牛马司矿、江苏东风煤矿、浙江长广煤田和长兴煤山、辽宁北票煤矿区和马架子徐大沟矿、四川盆地的中梁山、天府、南桐矿区、重庆松藻煤矿、贵州六盘水煤田、黔北煤田、云南恩洪矿区
    下载: 导出CSV

    表  2   我国煤层气主要成分分布频率统计

    Table  2   Statistical on distribution frequency of major composition in CBM in China

    气体成分分布参数
    CH4浓度区间/%<6060~7070~8080~8585~90≥90
    样品数1311211732293963604
    分布频率/%2.812.63.724.928.5177.44
    C2+浓度区间/%<11~22~44~88~12≥12
    样品数39711502162124758
    分布频率/%85.323.224.644.561.011.25
    CO2浓度区间/%<55~1010~1515~2020~25≥25
    样品数430316555414545
    分布频率/%92.463.551.180.870.970.97
    N2浓度区间/%<55~1010~1515~2020~25≥25
    样品数331472326215343159
    分布频率/%71.2115.545.633.290.913.42
    下载: 导出CSV
  • [1] 傅雪海,张小东,韦重韬. 煤层含气量的测试、模拟与预测研究进展[J]. 中国矿业大学学报,2021,50(1):13−31. doi: 10.13247/j.cnki.jcumt.001243

    FU Xuehai,ZHANG Xiaodong,WEI Chongtao. Review of coal bed methane content[J]. Journal of China University of Mining & Technology,2021,50(1):13−31. doi: 10.13247/j.cnki.jcumt.001243

    [2]

    MASTALERZ Maria,DROBNIAK Agnieszka,STRAPOC Dariusz,et al. Variations in pore characteristics in high volatile bituminous coals: implications for coal bed gas content[J]. International Journal of Coal Geology,2008,76(3):205−216. doi: 10.1016/j.coal.2008.07.006

    [3]

    CAO Lutong, CHANG Suoliang, YAO Yanbin. Application of seismic sedimentology in predicating sedimentary microfacies and coalbed methane gas content[J], Journal of Natural Gas Science and Engineering, 2019, 69: 102944.

    [4] 中国人民共和国国土资源部. 煤层气储量评估规范: DZ/T 0216—2020[S]. 北京: 中国标准出版社, 2010: 1−11.
    [5] 陶明信,徐永昌,马玉贞,等. 煤矿二氧化碳突出与研究[J]. 地球科学进展,1992,7(5):40−44.

    TAO Mingxin,XU Yongchang,MA Yuzhen,et al. On outbursts of carbon dioxiade in coal mines[J]. Advance in Earth Sciences,1992,7(5):40−44.

    [6]

    GILLIES Stewart, KIZIL Mehmet , WU Hsinwei, et al. The modelling of the occurrence of hydrogen sulphide in coal seams[C]//Proceedings Eighth US Mine Ventilation Symposium, Society of Mining Engineers, University of Missouri-Rolla Press, 1999: 709−720.

    [7]

    RITTER Ulrich,GRVER Arnt. Adsorption of petroleum compounds in vitrinite: implications for petroleum expulsion from coal[J]. International Journal of Coal Geology,2005,62:183−191. doi: 10.1016/j.coal.2004.11.004

    [8] 兰凤娟,秦 勇,林玉成. 煤层气组分浓度异常及其地球化学成因[J]. 中国煤炭地质,2009,21(4):27−30,43. doi: 10.3969/j.issn.1674-1803.2009.04.006

    LAN Fengjuan,QIN Yong,LIN Yucheng. Concentration anomaly of CBM components and its geochemical origin[J]. Coal Geology of China,2009,21(4):27−30,43. doi: 10.3969/j.issn.1674-1803.2009.04.006

    [9] 傅雪海,王文峰,岳建华,等. 枣庄八一矿瓦斯中H2S气体异常成因分析[J]. 煤炭学报,2006,31(2):206−210. doi: 10.3321/j.issn:0253-9993.2006.02.016

    FU Xuehai,WANG Wenfeng,YUE Jianhua,et al. Genesis analyses of H2S gas abnormity in gas of Bayi coal mine in Zaozhuang[J]. Journal of China Coal Society,2006,31(2):206−210. doi: 10.3321/j.issn:0253-9993.2006.02.016

    [10] 陈义林. 基于精细解吸过程的无烟煤重烃浓度异常及其成因探讨[D]. 徐州: 中国矿业大学, 2014.

    CHEN Yilin. Abnormal concentration and origin of heavy hydrocarbon in anthracite based on refined desorption process[D]. Xuzhou: China University of Mining and Technology, 2014.

    [11] 刘 超,孙蓓蕾,曾凡桂,等. 鄂尔多斯盆地东缘石西区块含氦天然气的发现及成因初探[J]. 煤炭学报,2021,46(4):1280−1287. doi: 10.13225/j.cnki.jccs.2021.0152

    LIU Chao,SUN Beilei,ZENG Fangui,et al. Discovery and genesis of helium-bearing natural gas in Shixi block, eastern margin of Ordos Basin[J]. Journal of China Coal Society,2021,46(4):1280−1287. doi: 10.13225/j.cnki.jccs.2021.0152

    [12]

    BROWN A. Origin of helium and nitrogen in the Panhandle-Hugoton field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin,2019,103(2):369−403. doi: 10.1306/07111817343

    [13] 胡小林,翁剑桥,戚明辉,等. 贵州西部上二叠统煤层气地质特征及其成藏意义[J]. 天然气地球科学,2022,33(8):1218−1225.

    HU Xiaolin,WENG Jianqiao,QI Minghui,et al. Geological characteristics of coalbed methane and its accumulation significance in the Upper Permian in western Guizhou[J]. Natural Gas Geoscience,2022,33(8):1218−1225.

    [14]

    ALSAAB D,ELIE M,IZART A,et al. Comparison of hydrocarbon gases (C1-C5) production from Carboniferous Donets (Ukraine) and Cretaceous Sabinas (Mexico) coals[J]. International Journal of Coal Geology,2008,74(2):154−162. doi: 10.1016/j.coal.2007.11.006

    [15]

    FU Haijiao,LI Yueguo,SU Xianbo,et al. Environmental conditions and mechanisms restricting microbial methanogenesis in the Miquan region of the southern Junggar Basin, NW China[J]. GSA Bulletin,2022:B36272.

    [16] 戴金星,戚厚发,宋 岩,等. 我国煤层气组份、碳同位素类型及其成因和意义[J]. 中国科学(B辑),1986,5(12):1317−1326.

    DAI Jinxing,QI Houfa,SONG Yan,et al. Coalbed methane composition and carbon isotope types and their origin and significance in China[J]. Science in China Series B:Chemistry,1986,5(12):1317−1326.

    [17]

    LAN Fengjuan,QIN Yong,WANG Aikuan,et al. The origin of high and variable concentrations of heavy hydrocarbon gases in coal from the Enhong syncline of Yunnan, China[J]. Journal of Natural Gas Science and Engineering,2020,76:103217. doi: 10.1016/j.jngse.2020.103217

    [18] 宋 岩,柳少波,洪 峰,等. 中国煤层气地球化学特征及成因[J]. 石油学报,2012,33(S1):99−106. doi: 10.7623/syxb2012S1012

    SONG Yan,LIU Shaobo,HONG Feng,et al. Geochemical characteristics and genesis of coalbed methane in China[J]. Acta Petrolei Sinica,2012,33(S1):99−106. doi: 10.7623/syxb2012S1012

    [19] 汤达祯,杨曙光,唐淑玲,等. 准噶尔盆地煤层气勘探开发与地质研究进展[J]. 煤炭学报,2021,46(8):2412−2425.

    TANG Dazhen,YANG Shuguang,TANG Shuling,et al. Advances in exploration, development and geology of coalbed methane in Junggar Basin[J]. Journal of China Coal Society,2021,46(8):2412−2425.

    [20] 刘军正,王 佟. 鹤岗盆地煤层气中氮气含量偏高问题探讨[J]. 中国煤田地质,1999,11(4):34−36.

    LIU Junzheng,WANG Tong. Discussion on the high nitrogen content in coalbed gas in Hegang basin[J]. Coal Geology of China,1999,11(4):34−36.

    [21]

    YANG Shengbo,WANG Haichao,FU Xuehai,et al. Hydrogen sulfide occurrence states in China’s coal seams[J]. Energy Exploration & Exploitation,2022,40(1):17−37.

    [22] 焦春林,傅雪海,葛燕燕,等. 我国煤矿瓦斯中H2S异常矿井的分布特征[J]. 黑龙江科技学院学报,2013,23(4):375−377.

    JIAO Chunlin,FU Xuehai,GE Yanyan,et al. Distribution characteristics of H2S anonalg area of coal mine gas in China[J]. Journal of Heilongjiang Institute of Science & Technology,2013,23(4):375−377.

    [23]

    CHEN Yilin,QIN Yong,JI Ming,et al. Influence of lamprophyre sills on coal metamorphism, coalbed gas composition and coalbed gas occurrence in the Tongxin Minefield, Datong Coalfield, China[J]. International Journal of Coal Geology,2020,217:1−16.

    [24] 霍中刚,薛文涛,舒龙勇. 我国煤矿岩石与CO2突出机制探讨[J]. 煤炭科学技术,2021,49(1):155−161.

    HUO Zhonggang,XUE Wentao,SHU Longyong. Exploration on outburst mechanism of rock and carbon dioxide in coal mines of China[J]. Coal Science and Technology,2021,49(1):155−161.

    [25] 李增华,顾士亮,周正发. 垞城煤矿井下氮气窒息事故原因分析[J]. 辽宁工程技术大学学报,2003,22(2):188−191.

    LI Zenghua,GU Shiliang,ZHOU Zhengfa. Analysis of the reason of suffocation accidents caused by nitrogen gas in Cacheng coal mines[J]. Journal of Liaoning Technical University,2003,22(2):188−191.

    [26] 中华人民共和国煤炭工业部. MT/T 77—1984, 煤层瓦斯含量和成份测定方法(解吸法)[S].
    [27] 中华人民共和国煤炭工业部. MT/T 77—1994, 煤层气测定方法(解吸法)[S].
    [28] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 13610—1992, 天然气的组成分析气相色谱法[S].
    [29] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 13610—2013, 天然气的组成分析气相色谱法[S].
    [30] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 19559—2004, 煤层气含量测定方法[S].
    [31] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 19559—2008, 煤层气含量测定方法[S].
    [32] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 19559—2021, 煤层气含量测定方法[S].
    [33] 贺天才, 秦 勇. 煤层气勘探开发利用技术[M]. 徐州: 中国矿业大学出版社, 2007: 1-12.

    HE Tiancai, QIN Yong. Exploration and utilization technology of coalbed methane[M]. Xuzhou: China University of Mining and Technology Press, 2007: 1-12.

    [34]

    MI Jingkui,ZHANG Shuichang,CHEN Jianping,et al. Upper thermal maturity limit for gas generation from humic coal[J]. International Journal of Coal Geology,2015,152:123−131. doi: 10.1016/j.coal.2015.08.009

    [35]

    Gentzis T,Goodarzi F,Cheung F K,et al. Coalbed methane producibility from the Mannville coals in Alberta, Canada: A comparison of two areas[J]. International Journal of Coal Geology,2008,74:237−249. doi: 10.1016/j.coal.2008.01.004

    [36] 兰凤娟. 恩洪向斜煤层重烃浓度异常及其成因[D]. 徐州: 中国矿业大学, 2013.

    LAN Fengjuan. Abnormal heavy hydrocarbon concentration and its causes in Enhong syncline coal seam[D]. Xuzhou: China University of Mining & Technology, 2013.

    [37] 于良臣,李文馥. 煤与瓦斯突出煤层重烃组分的研究[J]. 煤炭学报,1981(4):1−8. doi: 10.13225/j.cnki.jccs.1981.04.001

    YU Liangchen,LI Wenfu. Study on heavy hydrocarbon components in coal and gas outburst coal seam[J]. Journal of China Coal Society,1981(4):1−8. doi: 10.13225/j.cnki.jccs.1981.04.001

    [38] 孙四清,陈冬冬,龙威成,等. 煤油气共存矿井油型气精准治理技术及工程实践[J]. 煤炭科学技术,2021,49(5):60−66. doi: 10.13199/j.cnki.cst.2021.05.008

    SUN Siqing,CHEN Dongdong,LONG Weicheng,et al. Precision Control Technology and Engineering Practice of Oil Type Gas in Coal-oil-gas Coexistence Mine[J]. Coal Science and Technology,2021,49(5):60−66. doi: 10.13199/j.cnki.cst.2021.05.008

    [39] 唐恩贤. 黄陵矿区煤层底板异常涌出气体成因类型[J]. 煤田地质与勘探, 2015, 43(6): 8-11.

    TANG Enxian. Genetic type of abnormal gas emission from coal seam floor in Huangling mining area. Coal Geology & Exploration, 2015, 43(6): 8-11.

    [40]

    CHEN Yilin,QIN Yong,LUO Zheng,et al. Compositional shift of residual gas during desorption from anthracite and its influencing factors[J]. Fuel,2019,250:65−78. doi: 10.1016/j.fuel.2019.03.144

    [41]

    SMITH J W,GOULD K W,HART G H,et al. Isotopic studies of Australian natural and coal seam gas[J]. Bulletin of Australasian Institute of Mining Metallurgy,1985,290(6):43−51.

    [42] 戚厚发. 煤系天然气与煤层瓦斯甲烷碳同位素的差异及影响因素的初步探讨[J]. 石油实验地质,1985,7(2):81−86. doi: 10.11781/sysydz198502081

    QI Houfa. A preliminary study on the difference and influencing factors of carbon isotopes of methane between coal measures natural gas and coal seam gas[J]. Petroleum Geology & Experiment,1985,7(2):81−86. doi: 10.11781/sysydz198502081

    [43] 吴 俊,于良臣,李文馥,等. 中国煤层烃类气体组份及地球化学特征的研究[J]. 中国科学(B辑),1989(9):971−981.

    WU Jun,YU Liangchen,LI Wenfu,et al. Study on hydrocarbon gas composition and geochemical characteristics of coal seams in China[J]. Scientia Sinica (Chimica),1989(9):971−981.

    [44] 李明潮, 张伍侪. 中国主要煤田的浅层煤成气[M]. 北京: 科学出版社, 1990: 74−148.

    LI Mingchao, ZHANG Wuchai. Shallow coal gas in main coalfields of China[M]. Beijing: Science Press, 1990: 74−148.

    [45]

    KOTARBA Maciej. Isotopic geochemistry and habitat of the natural gases from the Upper Carboniferous Žacleř coal-bearing formation in the Nowa Ruda coal district (Lower Silesia, Poland)[J]. Organic Geochemistry,1990,16(1-3):549−560. doi: 10.1016/0146-6380(90)90069-C

    [46] 张新民, 张遂安, 钟玲文, 等. 中国的煤层甲烷[M]. 西安: 陕西科学技术出版社, 1991: 1−140.

    ZHANG Xinmin, ZHANG Suian, ZHONG Lingwen, et al. Coalbed methane in China[M]. Xi’an: Shaanxi Science and Technology Press, 1991: 1−140.

    [47]

    RICE Dudley. Composition and origins of coalbed gas[J]. Hydrocarbons from coal:AAPG Studies in Geology,1993,38(1):159−184.

    [48]

    KOTARBA Maciej. Composition and origin of coalbed gases in the Upper Silesian and Lublin basins, Poland[J]. Organic Geochemistry,2001,32(1):163−180. doi: 10.1016/S0146-6380(00)00134-0

    [49]

    KOTARBA Maciej,RICE Dudley. Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland[J]. Applied Geochemistry,2001,16(7):895−910.

    [50] 张小军,陶明信,解光新,等. 淮南煤田次生生物成因气的比例及资源意义[J]. 沉积学报,2007,25(2):314−318. doi: 10.3969/j.issn.1000-0550.2007.02.021

    ZHANG Xiaojun,TAO Mingxin,XIE Guangxin,et al. The proportion and resource significance of secondary biogenic gas in Huainan coalfield[J]. Acta Sedimentologica Sinica,2007,25(2):314−318. doi: 10.3969/j.issn.1000-0550.2007.02.021

    [51]

    TAO Mingxin,SHI Baoguang,LI Jinying,et al. Secondary biological coalbed gas in the Xinji area, Anhui Province, China: Evidence from the geochemical features and secondary changes[J]. International Journal of Coal Geology,2007,71(2):358−370.

    [52]

    FAIZ M,SAGHAFI A,SHERWOOD N,et al. The influence of petrological properties and burial history on coal seam methane reservoir characterisation, Sydney Basin, Australia[J]. International Journal of Coal Geology,2007,70(1):193−208.

    [53]

    STRAPOC Dariusz,MASTALERZ Maria,Schimmelmann Arndt,et al. Variability of geochemical properties in a microbially dominated coalbed gas system from the eastern margin of the Illinois Basin, USA[J]. International Journal of Coal Geology,2008,76(1):98−110.

    [54]

    LAN Fengjuan,QIN Yong,LI Ming,et al. Abnormal concentration and origin of heavy hydrocarbon in upper permian coal seams from Enhong syncline, Yunnan, China[J]. Journal of Earth Science,2012,23(6):842−853. doi: 10.1007/s12583-012-0294-x

    [55] 田文广,汤达祯,王志丽,等. 鄂尔多斯盆地东北缘保德地区煤层气成因[J]. 高校地质学报,2012,18(3):479−484. doi: 10.3969/j.issn.1006-7493.2012.03.013

    TIAN Wenguang,TANG Dazhen,WANG Zhili,et al. Genesis of coalbed methane in baode area, northeastern margin of ordos basin[J]. Geological Journal of China Universities,2012,18(3):479−484. doi: 10.3969/j.issn.1006-7493.2012.03.013

    [56] 李贵红,张 泓. 鄂尔多斯盆地东缘煤层气成因机制[J]. 中国科学: 地球科学,2013,43(8):1359−1364. doi: 10.1360/zd-2013-43-8-1359

    LI Guihong,ZHANG Hong. Genesis Mechanism of Coalbed ethane in Eastern Margin of Ordos Basin[J]. Scientia Sinica (Terrae),2013,43(8):1359−1364. doi: 10.1360/zd-2013-43-8-1359

    [57] 唐跃刚,郭亚楠,王绍清. 中国特殊煤种—树皮煤的研究进展[J]. 中国科学基金,2011,25(3):154−163.

    TANG Yuegang,GUO Yanan,WANG Shaoqing. The Chinese typical coal type-bark coal: A review[J]. Bulletin of National Science Foundation of Chin,2011,25(3):154−163.

    [58] 詹益信,傅雪海. 江苏省煤层气资源开发前景分析[J]. 江苏煤炭,1997(4):41−42.

    ZHAN Yixin,FU Xuehai. Prospect analysis of coalbed methane resource development in Jiangsu province[J]. Energy Technology and Management,1997(4):41−42.

    [59]

    LAZAR Jerneja,KANDUC Tjaša,JAMNIKAR Sergej,et al. Distribution, composition and origin of coalbed gases in excavation fields from the Preloge and Pesje mining areas, Velenje Basin, Slovenia[J]. International Journal of Coal Geology,2014,131:363−377. doi: 10.1016/j.coal.2014.05.007

    [60] 黄 雷,刘池洋. 鄂尔多斯盆地北部地区延安组煤层自燃烧变产物及其特征[J]. 地质学报,2014,88(9):1753−1761.

    HUANG Lei,LIU Chiyang. Coal spontaneous combustion products and their characteristics of Yan ' an Formation in northern Ordos Basin[J]. Acta Geologica Sinica,2014,88(9):1753−1761.

    [61] 陈义林,秦 勇. 无机成因二氧化碳气-水界面交换反应表征与机制[J]. 煤炭学报,2017,42(7):1811−1817. doi: 10.13225/j.cnki.jccs.2016.1424

    CHEN Yilin,QIN Yong. Characterization and Mechanism of Gas-Water Interface Exchange Reaction of Inorganic Carbon Dioxide[J]. Journal of China Coal Society,2017,42(7):1811−1817. doi: 10.13225/j.cnki.jccs.2016.1424

    [62]

    LI Wei,CHENG Yuanping,WANG Lei. The origin and formation of CO2 gas pools in the coal seam of the Yaojie coalfield in China[J]. International Journal of Coal Geology,2011,85(2):227−236. doi: 10.1016/j.coal.2010.11.011

    [63]

    GOLDING S D,UYSAL I T,BOLHAR R,et al. Carbon dioxide-rich coals of the Oaky Creek area, central Bowen Basin: a natural analogue for carbon sequestration in coal systems[J]. Australian Journal of Earth Sciences,2013,60(1):125−140. doi: 10.1080/08120099.2012.750627

    [64]

    KANDUC Tjasa,PEZDIC Joze. Origin and distribution of coalbed gases from the Velenje basin, Slovenia[J]. Geochemical Journal,2005,39(5):397−409. doi: 10.2343/geochemj.39.397

    [65]

    TANG Shuling,TANG Dazhen,TAO Shu,et al. CO2-enriched CBM accumulation mechanism for low-rank coal in the southern Junggar Basin, China[J]. International Journal of Coal Geology,2022,253(5):103955.

    [66]

    WARD Bess,JENSEN Marlene. The microbial nitrogen cycle[J]. Frontiers in Microbiology,2014,5:553.

    [67]

    ZHU Yuenian,SHI Buqing,FANG Chaobin. The isotopic compositions of molecular nitro-gen: Implications on their origins in natural gas accumulations[J]. Chemical Geology,2000,164(3/4):321−330. doi: 10.1016/S0009-2541(99)00151-5

    [68]

    XU Zhanjie,LIU Qinfu,ZHENG Qiming,et al. Isotopic composition and content of coalbed methane production gases and waters in karstic collapse column area, Qinshui Coalfield, China[J]. Journal of Geochemical Exploration,2016,165:94−101. doi: 10.1016/j.gexplo.2016.03.001

    [69]

    JENDEN P D,KAPLAN I R,POREDA R,et al. Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios[J]. Geochimica Et Cosmochimica Acta,1988,52(4):851−861. doi: 10.1016/0016-7037(88)90356-0

    [70]

    XIE Panpan,DAi Shifeng,HOWER James,et al. Nitrogen isotopic compositions in NH4+ -mineral-bearing coal: Origin and isotope fractionation[J]. Chemical Geology,2021,559:119946. doi: 10.1016/j.chemgeo.2020.119946

    [71]

    KROOSS B M,LITTKE R,MÜLLER B,et al. Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations[J]. Chemical Geology,1995,126(3/4):291−318. doi: 10.1016/0009-2541(95)00124-7

    [72] 傅雪海,陈振胜,宋 儒,等. 煤系灰岩气的发现及意义(中国煤炭地质总局成立65周年专刊)[J]. 中国煤炭地质,2018,30(6):59−63. doi: 10.3969/j.issn.1674-1803.2018.06.12

    FU Xuehai,CHEN Zhensheng,SONG Ru,et al. Discovery and significance of coal-bearing limestone gas(Special Issue on the 65th Anniversary of China Coal Geology General Administration)[J]. Coal Geology of China,2018,30(6):59−63. doi: 10.3969/j.issn.1674-1803.2018.06.12

    [73] 刘会虎,兰天贺,薛俊华,等. 淮南潘集外围深部煤层气地球化学特征及成因[J]. 煤炭学报,2018,43(2):498−506. doi: 10.13225/j.cnki.jccs.2017.0197

    LIU Huihu,LAN Tianhe,XUE Junhua,et al. Geochemical characteristics and genesis of deep coalbed methane in the periphery of Panji, Huainan[J]. Journal of China Coal Society,2018,43(2):498−506. doi: 10.13225/j.cnki.jccs.2017.0197

    [74] 戴金星. 中国含硫化氢的天然气分布特征, 分类及其成因探讨[J]. 沉积学报,1985,3(4):109−120.

    DAI Jinxing. Distribution characteristics, classification and genesis of natural gas containing hydrogen sulfide in China[J]. Acta Sedimentologica Sinica,1985,3(4):109−120.

    [75]

    CHAMBERS L A,TRUDINGER P A. Microbiological fractionation of stable sulfur isotopes: A review and critique[J]. Geomicrobiology Journal,1979,1(3):249−293. doi: 10.1080/01490457909377735

    [76]

    ZHANG Shuichang,ZHU Guangyu,LIANG Yingbo,et al. Geochemical characteristics of the Zhaolanzhuang sour gas accumulation and thermochemical sulfate reduction in the Jixian Sag of Bohai Bay Basin[J]. Organic Geochemistry,2005,36(12):1717−1730. doi: 10.1016/j.orggeochem.2005.08.015

    [77]

    ZHANG Tongwei,ELLIS Geoffrey,WANG Kangshi,et al. Effect of hydrocarbon type on thermochemical sulfate reduction[J]. Organic Geochemistry,2007,38(6):897−910. doi: 10.1016/j.orggeochem.2007.02.004

    [78]

    LU Lu, FU Xuehai, HE Ye, et al. Distribution and genesis of H2S abnormity area in gas of Shigejie Coal Mine[C]//Proceedings of the 2nd international symposium of mine safety science and engineering, Beijing: 2013: 1133-1136.

    [79] 刘小辉. 阜康矿区H2S异常煤矿的地质控制研究[D]. 乌鲁木齐: 新疆大学, 2014.

    LIU Xiaohui. Study on geological control of H2S abnormal coal mine in Fukang mining area[D]. Urumqi: Xinjiang University, 2014.

    [80] 陶明信. 煤层气地球化学研究现状与发展趋势[J]. 自然科学进展,2005,15(6):648−652. doi: 10.3321/j.issn:1002-008X.2005.06.002

    TAO Mingxin. Research Status and Development Trend of Coalbed Methane Geochemistry[J]. Progress in Natural Science:Materials International,2005,15(6):648−652. doi: 10.3321/j.issn:1002-008X.2005.06.002

    [81]

    ZHOU Zheng,BALLENTINE Chris,Kipfer Rolf,et al. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA[J]. Geochimica et Cosmochimica Acta,2005,69(23):5413−5428. doi: 10.1016/j.gca.2005.06.027

    [82]

    BROADHEAD Ronald. Oil, natural gas and groundwater in the San Juan Basin[C]//Proceedings of the 41st Annual New Mexico Water Conference, New Mexico: 1996, 302: 79.

  • 期刊类型引用(8)

    1. 傅雪海,康俊强,陈义林,段超超,卢杰林,张宝鑫. 煤层气有关术语辨析. 中国矿业大学学报. 2025(01): 26-33 . 百度学术
    2. 苏现波,丁锐,赵伟仲,严德天,李瑞明,王一兵,王海超,黄胜海,周艺璇,王小明,伏海蛟. 准南低质煤层气原位提质增量研究. 煤炭学报. 2025(01): 532-545 . 百度学术
    3. 李伟,杨世龙,周红星,刘金兆. 重复注气压降法煤层渗透率模型与原位测试研究. 煤炭科学技术. 2024(04): 193-202 . 本站查看
    4. 武金玮,张明康,叶城荫,芮泽宝. 低浓度煤矿瓦斯氧化催化剂研究进展. 能源环境保护. 2024(03): 74-82 . 百度学术
    5. 卢杰林,傅雪海,康俊强,张宝鑫,程鸣. 不同变质作用类型的煤级梯度对比. 煤炭科学技术. 2024(12): 180-192 . 本站查看
    6. 马代兵,陈立超. 煤层气直井压裂效果及其对产能影响——以窑街矿区为例. 煤炭科学技术. 2023(06): 130-136 . 本站查看
    7. 任鸽. 煤层气脱水处理与节能技术研究. 中国石油和化工标准与质量. 2023(20): 169-171 . 百度学术
    8. 胡彬彬,张晓阳,李康,张莎莎,吴财芳,张军建. 老厂矿区煤储层孔隙结构特征及全尺度表征. 煤炭科学技术. 2023(S2): 165-174 . 本站查看

    其他类型引用(7)

图(6)  /  表(2)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  9
  • PDF下载量:  254
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-08-11
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-01-29

目录

/

返回文章
返回