Abstract:
The drilling and anchoring robot is an important equipment to realize the intellectualization of fully-mechanized coal mining. The control effect of its manipulator directly affects the safety and efficiency of the support operation of the drilling and anchoring robot.The control of drilling anchor manipulator usually adopts PID controller,but under the working conditions of bad environment and complex coal seam,the parameter selection of PID controller has a great impact on the control effect. Due to the limitation of integer order PID control algorithm and traditional empirical parameter adjustment,it is difficult to find a group of parameters with the best control effect in a short time,resulting in the failure of timely and accurate positioning of the end of the manipulator. Based on robot technology,fractional order control technology and intelligent optimization algorithm,this paper uses the method of combining numerical modeling and simulation analysis,uses whale algorithm(WOA) to adjust the parameters of fractional order FOPID controller and applies it to the motion control of maLMnipulator. Based on the spinor theory,the joint coordinate system and coordinate transformation matrix expression of the manipulator are established by D-H method,and the point cloud diagram of the manipulator workspace is solved by Monte Carlo algorithm;Based on the in dependent joint control theory,the single input single output system model of hydraulic motor / cylinder at the joint of manipulator is established by using MATLAB Simulink software and fractional FOPID control technology. Based on four intelligent optimization algorithms:genetic algorithm(GA),particle swarm optimization(PSO),whale algorithm(WOA) and search algorithm(GPS),the effect of step influence under different control combination strategies of hydraulic motor / oil cylinder is analyzed by comparing three dynamic indexes:standard deviation,overshoot and stability time. The effectiveness of whale algorithm(WOA) in tuning FOPID parameters is verified by simulation analysis. The research work lays a theoretical foundation for the accurate positioning and automatic support of the unmanned drilling and anchoring manipulator,and also provides a reference for the design of relevant motion control strategies.