高级检索

基于MOPSO-SA混合算法的矿山微震震源定位方法

Microeismic source localization method based on hybrid algorithm of MOPSO-SA

  • 摘要: 冲击矿压是一种典型的煤矿动力灾害,通过监测煤矿微震来进行冲击矿压的预防预警是一种有效的手段,其中震源位置是微震监测中需要确定的最关键和最基本的参数之一。在微震震源定位过程中,参与定位的通道个数对定位精度具有显著影响。当震动激发的检波探测器个数足够多时,不断增加通道个数并不能有效提高震源的定位精度。基于此,选取合适的震动信号参与定位对提升震源定位精度至关重要。为解决该问题,在设定均勾介质的条件下,基于走时拟合法的震源定位模型,提出一种既考虑定位通道个数、又考虑模型定位精度的微震震源多目标优化定位模型。为求解该模型,结合多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization,MOPSO)和模拟退火算法(Simulated Annealing,SA)的互补优势,提出一种基于多目标粒子群-模拟退火(MOPSO-SA)的矿山微震震源混合定位方法。该方法利用多目标粒子群优化算法的全局探索性能,为实现局部搜索的模拟退火算法提供更优的初始解,同时也有效避免寻优过程陷入局部极值。试验结果表明所提算法能够有效地求解多目标震源定位模型,且具有较高的定位精度。

     

    Abstract: Rock burst is a typical coal mine dynamic disaster that can be warned early through monitoring microseism caused,and microseismic location is one of the most critical and basic parameters to be determined.In the process of microseismic source localization,the number of detectors involved in positioning has a great influence on positioning accuracy.When the microseismic source is detected by enough detectors,continuously increasing the number of positioning channels cannot effectively improve the positioning accuracy.Therefore,choosing an appropriate number of detectors to participate in the localization is very important to improve the accuracy of localization.In order to solve this problem,with the condition of setting homogeneous medium,based on the microseismic source localization model of observation time in this paper,we propose a multi-objective microseismic source localization model that takes into account both the number of detectors and positioning accuracy.Besides,combined the complementary advantages between Multi-Objective Particle Swarm Optimization (MOPSO) and Simulated Annealing (SA),a hybrid algorithm based on MOPSO-SA is obtained to solve the above model.The proposed method utilizes the global search performance of the multi-objective particle swarm optimization algorithm to provide a better initial solution for the simulated annealing algorithm for local search,thereby effectively preventing the optimization process from falling into local extreme values.The experimental results illustrate that the proposed algorithm has better microseismic positioning accuracy.

     

/

返回文章
返回