高级检索
苏现波, 夏大平, 赵伟仲, 伏海蛟, 郭红光, 何环, 鲍园, 李丹, 魏国琴. 煤层气生物工程研究进展[J]. 煤炭科学技术, 2020, 48(6).
引用本文: 苏现波, 夏大平, 赵伟仲, 伏海蛟, 郭红光, 何环, 鲍园, 李丹, 魏国琴. 煤层气生物工程研究进展[J]. 煤炭科学技术, 2020, 48(6).
SU Xianbo, XIA Daping, ZHAO Weizhong, FU Haijiao, GUO Hongguang, HE Huan, BAO Yuan, LI Dan, WEI Guoqin. Research advances of coalbed gas bioengineering[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6).
Citation: SU Xianbo, XIA Daping, ZHAO Weizhong, FU Haijiao, GUO Hongguang, HE Huan, BAO Yuan, LI Dan, WEI Guoqin. Research advances of coalbed gas bioengineering[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6).

煤层气生物工程研究进展

Research advances of coalbed gas bioengineering

  • 摘要: 煤层气生物工程是将营养液或经过驯化、改良的菌种注入地下煤层或通过地面发酵产气的方式,把煤的部分有机组分转化为甲烷,实现微生物强化煤层气产出的一种特殊发酵工程。该工程作为多学科交叉的新兴边缘学科,涉及到能源、环境和新材料三大领域,具有多重效益,越来越受到关注。
    详细总结了国内外煤层气生物工程10余年的发展历程,首先从煤层(水)的生物多样性、厌氧发酵系统产气机制和控制因素等方面系统分析了煤层气生物工程的微生物学基础ꎻ以研究厌氧发酵系统中气固液菌为核心,整合其他学科的研究方法,初步形成了煤层气生物工程自身的研究方法,最后提出了煤层气生物工程的实施方案及发展趋势。生物多样性为煤层生物甲烷的生成提供了菌种来源,根据发酵系统中气固液菌的变化规律将发酵过程区分为 4 个阶段,系统中的底物和环境因子控制了微生物群落结构,影响了生物甲烷的产量。甲烷的成因区分为乙酸营养型、氢营养型、甲基营养型3种。
    这一认识初步构成了煤层气生物工程的理论基础,分子生物学、地球化学与煤化学等的结合为该学科的发展提供了方法支撑,地面发酵池产气工程除了获取生物甲烷这一洁净能源外,还可以与褐煤提质、高硫煤微生物脱硫和新材料合成相结合,使得经济效益最大化,地下煤层气生物工程以其增气、增解、增透作用可大幅度提升煤层气井的产量,并获取液相有机物,同时可以实现二氧化碳的甲烷化,二氧化碳矿化对采空区可起到固化作用,减排效果显著,煤层气生物工程以其理论性、方法性和实用性正在成为一个全新的领域,将有力推进中国煤层气大规模商业化开发进程。

     

    Abstract: Coalbed Gas Bioengineering is a special fermentation project by injecting nutrient solution or domesticated and improved strains into underground coal seams or producing gas through surface fermentation to convert some organic components of coal into methane to achieve microbial enhanced coalbed methane(CBM) production.As a newly emerging marginal discipline with multiple disciplines,the project involves three major fields of energy,environment and new materials.It has multiple benefits and attracts more and more attention.This paper summarizes the development history of CBM bioengineering at home and abroad for more than 10 years in detail.Firstly,the microbiological Basis of CBM Bioengineering is systematically discussed from the aspects of coalbed (water) biodiversity,anaerobic fermentation system gas production mechanism and control factors.Then,taking the research of gas-solid-liquid bacteria in anaerobic fermentation system as the core and integrating the research methods of other disciplines,the research method of CBM bioengineering itself has been initially formed.Finally,the implementation plan and development trend of CBM Bioengineering are proposed.Biodiversity provides a source of bacteria for the formation of bio-methane in coal seams.The fermentation process is divided into four stages according to the changes of gas-solid-liquid bacteria in the fermentation system.The substrate and environmental factors in the system control the microbial community structure and affect the production of bio-methane.The causes of methane are divided into three types: acetic acid nutrient type,hydrogen nutrient type,and methyl nutrient type.This understanding has initially formed the theoretical basis of coalbed gas bioengineering.The combination of molecular biology,geochemistry and coal chemistry provides method support for the development of this discipline.In addition,to obtaining bio-methane as a clean energy source,the ground fermentation tank gas production project can also be combined with lignite upgrading,high sulfur coal microbial desulfurization and new material synthesis to maximize economic benefits; Underground coalbed gas bioengineering can greatly increase the output of coalbed methane wells with its gas-enhancing,decomposing,and permeability-increasing effects,and obtain liquid-phase organic matter.At the same time,it can realize the methanation of carbon dioxide,and the emission reduction effect is obvious.CBM Bioengineering is becoming a brand-new field with its theoretical,methodological and practical natures,and will effectively promote the large-scale commercial development process of CBM in China.

     

/

返回文章
返回