Citation: | CHEN Shuya,CAI Jihua,YANG Xianyu,et al. Effect and mechanisms of chelating agents on pore structure variation and permeability enhancement of low permeability coal seams[J]. Coal Science and Technology,2025,53(3):262−271. DOI: 10.12438/cst.2024-1824 |
China’s coal seams are characterized of low porosity and low permeability. To improve the production of coalbed methane (CBM) wells, chemical stimulation was proposed to enhance the connectivity of coal fractures and cleats by dissolving the cementing inorganic minerals, hance increase coal permeability. Considering the drawbacks of conventional acid such as severe corrosion and second precipitation, the possibility of using chelating agents for reservoir reconstruction was proposed. Taking coal samples from No.3 coal seam, Chengzhuang coal mine, Qinshui basin as research object, chemical titration, static dissolution experiment, micromorphology observation, core-flooding experiment, evaluation of corrosion rate of N-80 coupons and mercury intrusion porosimetry experiment were conducted. The corrosion effects of four chelating agents, EDTA, HEDTA, GLDA and MGDA, on minerals in coal under different pH conditions and the dynamic change process of permeability in coal cores during the process of expulsion were investigated, and finally the corrosion rates of chelating agents and conventional hydrochloric acid on the N-80 specimens were compared, and the influence law of the preferred chelating agents on the pore structure of coal and their permeability-enhancing action mechanism were clarified. Results showed that among the four chelating agents, HEDTA has the strongest chelating ability to Ca2+ and Fe3+; the coal dissolution rate decreases with the increase of the concentration of chelating agent under acidic conditions; the coal matrix soaked with 5% GLDA produces micro-cracks and pores, which is beneficial to the desorption and migration of coalbed methane; after injecting 80PV of 5% GLDA into the coal, its permeability increased 68.75%; the total porosity of the coal sample increased from 5.91% to 28.8% due to the increase of pore volume with diameter of 10-100 nm and >
[1] |
武强,涂坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636.
WU Qiang,TU Kun,ZENG Yifan,et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy(coal) industry in China[J]. Journal of China Coal Society,2019,44(6):1625−1636.
|
[2] |
LI H Y,LAU H C,HUANG S. China’s coalbed methane development:A review of the challenges and opportunities in subsurface and surface engineering[J]. Journal of Petroleum Science and Engineering,2018,166:621−635. doi: 10.1016/j.petrol.2018.03.047
|
[3] |
刘贻军,娄建青. 中国煤层气储层特征及开发技术探讨[J]. 天然气工业,2004,24(1):68−71,108. doi: 10.3321/j.issn:1000-0976.2004.01.021
LIU Yijun,LOU Jianqing. Study on reservoir characteristics and development technology of coal-bed gas in China[J]. Natural Gas Industry,2004,24(1):68−71,108. doi: 10.3321/j.issn:1000-0976.2004.01.021
|
[4] |
邹才能,杨智,黄士鹏,等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发,2019,46(3):433−442. doi: 10.11698/PED.2019.03.02
ZOU Caineng,YANG Zhi,HUANG Shipeng,et al. Resource types,formation,distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development,2019,46(3):433−442. doi: 10.11698/PED.2019.03.02
|
[5] |
BALUCAN R D,TURNER L G,STEEL K M. X-ray μCT investigations of the effects of cleat demineralization by HCl acidizing on coal permeability[J]. Journal of Natural Gas Science and Engineering,2018,55:206−218. doi: 10.1016/j.jngse.2018.05.007
|
[6] |
CHEN S Y,XIE K Z,SHI Y P,et al. Chelating agent-introduced unconventional compound acid for enhancing coal permeability[J]. Journal of Petroleum Science and Engineering,2021,199:108270. doi: 10.1016/j.petrol.2020.108270
|
[7] |
范耀. 前置酸压裂提高煤层气单井产量机理与适用性研究[J]. 煤田地质与勘探,2021,49(4):153−161. doi: 10.3969/j.issn.1001-1986.2021.04.018
FAN Yao. Mechanism and applicability of increasing coalbed methane well production by pre-positioned acid fracturing[J]. Coal Geology & Exploration,2021,49(4):153−161. doi: 10.3969/j.issn.1001-1986.2021.04.018
|
[8] |
蒋长宝,林骏,王亮,等. 酸化作用前后煤样吸附甲烷特性研究[J]. 煤炭科学技术,2018,46(9):163−169.
JIANG Changbao,LIN Jun,WANG Liang,et al. Study on methane adsorption characteristics of coal samples before and after acidification[J]. Coal Science and Technology,2018,46(9):163−169.
|
[9] |
袁梅,李照平,李波波,等. 酸化对煤微观结构及煤层气解吸—扩散的影响[J]. 天然气工业,2022,42(6):163−172. doi: 10.3787/j.issn.1000-0976.2022.06.014
YUAN Mei,LI Zhaoping,LI Bobo,et al. Effect of acidification on coal microstructure and CBM desorption and diffusion[J]. Natural Gas Industry,2022,42(6):163−172. doi: 10.3787/j.issn.1000-0976.2022.06.014
|
[10] |
倪小明,李全中,王延斌,等. 多组分酸对不同煤阶煤储层化学增透实验研究[J]. 煤炭学报,2014,39(S2):436−440.
NI Xiaoming,LI Quanzhong,WANG Yanbin,et al. Experimental study on chemical permeability enhancement of coal reservoirs with different coal ranks by multi-component acids[J]. Journal of China Coal Society,2014,39(S2):436−440.
|
[11] |
胡千庭,李晓旭,陈强,等. 酸性压裂液防治低渗煤层水锁损害实验研究[J]. 煤炭学报,2022,47(12):4466−4481.
HU Qianting,LI Xiaoxu,CHEN Qiang,et al. Mitigating water blockage in low-permeability coal seam by acid-based fracturing fluid[J]. Journal of China Coal Society,2022,47(12):4466−4481.
|
[12] |
BALUCAN R D,TURNER L G,STEEL K M. Acid-induced mineral alteration and its influence on the permeability and compressibility of coal[J]. Journal of Natural Gas Science and Engineering,2016,33:973−987. doi: 10.1016/j.jngse.2016.04.023
|
[13] |
刘齐,陈强,孙中光,等. 煤层不同类型裂缝应力敏感性实验:以阜新盆地煤样为例[J]. 天然气地球科学,2021,32(3):437−446.
LIU Qi,CHEN Qiang,SUN Zhongguang,et al. Stress sensitivity of coal seam with different fractures:Case study of Fuxin Basin[J]. Natural Gas Geoscience,2021,32(3):437−446.
|
[14] |
刘长松,赵海峰,陈帅,等. 大宁–吉县区块深层煤层气井酸压工艺及现场试验[J]. 煤田地质与勘探,2022,50(9):154−162. doi: 10.12363/issn.1001-1986.21.11.0699
LIU Changsong,ZHAO Haifeng,CHEN Shuai,et al. Acid fracturing technology of deep CBM wells and its field test in Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):154−162. doi: 10.12363/issn.1001-1986.21.11.0699
|
[15] |
王镜惠,梅明华,刘娟,等. 煤储层酸化增渗影响因素及酸化压裂选井原则[J]. 中国煤炭地质,2020,32(5):12−14,26.
WANG Jinghui,MEI Minghua,LIU Juan,et al. Coal reservoir acidification permeability enhancing impact factors and acidification fracturing well selection principle[J]. Coal Geology of China,2020,32(5):12−14,26.
|
[16] |
李曙光,王红娜,徐博瑞,等. 大宁−吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165−172. doi: 10.12363/issn.1001-1986.21.12.0800
LI Shuguang,WANG Hongna,XU Borui,et al. Influencing factors on gas production effect of acid fractured CBM Wells in deep coal seam of Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(3):165−172. doi: 10.12363/issn.1001-1986.21.12.0800
|
[17] |
MAHMOUD M. New formulation for sandstone acidizing that eliminates sand production problems in oil and gas sandstone reservoirs[J]. Journal of Energy Resources Technology,2017,139(4):042902. doi: 10.1115/1.4036251
|
[18] |
LIU Z S,LIU D M,CAI Y D,et al. Permeability,mineral and pore characteristics of coals response to acid treatment by NMR and QEMSCAN:Insights into acid sensitivity mechanism[J]. Journal of Petroleum Science and Engineering,2021,198:108205. doi: 10.1016/j.petrol.2020.108205
|
[19] |
冯玉龙,司青,王浩,等. 氧化剂处理前后煤孔隙分形特征研究[J]. 煤矿安全,2021,52(2):18−22.
FENG Yulong,SI Qing,WANG Hao,et al. Study on fractal characteristics of coal pore before and after oxidation treatment[J]. Safety in Coal Mines,2021,52(2):18−22.
|
[20] |
康毅力,涂莹谦,游利军,等. 改善煤岩储层渗流能力的氧化液处理实验研究[J]. 天然气工业,2018,38(9):61−69. doi: 10.3787/j.issn.1000-0976.2018.09.008
KANG Yili,TU Yingqian,YOU Lijun,et al. An experimental study on oxidizer treatment used to improve the seepage capacity of coal reservoirs[J]. Natural Gas Industry,2018,38(9):61−69. doi: 10.3787/j.issn.1000-0976.2018.09.008
|
[21] |
郭红玉,苏现波,陈俊辉,等. 二氧化氯对煤储层的化学增透实验研究[J]. 煤炭学报,2013,38(4):633−636.
GUO Hongyu,SU Xianbo,CHEN Junhui,et al. Experimental study on chemical permeability improvement of coal reservoir using chlorine dioxide[J]. Journal of China Coal Society,2013,38(4):633−636.
|
[22] |
JING Z H,MAHONEY S A,RODRIGUES S,et al. A preliminary study of oxidant stimulation for enhancing coal seam permeability:Effects of sodium hypochlorite oxidation on subbituminous and bituminous Australian coals[J]. International Journal of Coal Geology,2018,200:36−44. doi: 10.1016/j.coal.2018.10.006
|
[23] |
李朋朋. 溶剂改造后构造煤的甲烷扩散响应特征及机理分析[D]. 焦作:河南理工大学,2018.
LI Pengpeng. Characteristics and mechanism analysis of methane diffusion response of structural coal after solvent reform[D]. Jiaozuo:Henan Polytechnic University,2018.
|
[24] |
WANG F F,ZHANG X D,ZHANG S,et al. Mechanism of solvent extraction-induced changes to nanoscale pores of coal before and after acidification[J]. Fuel,2022,310:122467. doi: 10.1016/j.fuel.2021.122467
|
[25] |
杨娟,许思雨,戴俊,等. 活化过硫酸铵溶液对煤样氧化增透的实验研究[J]. 煤炭学报,2020,45(4):1488−1498.
YANG Juan,XU Siyu,DAI Jun,et al. Experimental study on oxidative improving-permeability of coal samples with activated ammonium persulfate solution[J]. Journal of China Coal Society,2020,45(4):1488−1498.
|
[26] |
王浩,司青,罗宪,等. 2种氧化剂对贫煤孔隙特性影响的对比研究[J]. 煤矿安全,2020,51(4):1−4,9.
WANG Hao,SI Qing,LUO Xian,et al. Comparative study on effect of two oxidants on pore characteristics of lean coal[J]. Safety in Coal Mines,2020,51(4):1−4,9.
|
[27] |
MAHMOUD M A A,NASR-EL-DIN H A A,DE WOLF C A A,et al. Evaluation of a new environmentally friendly chelating agent for high-temperature applications[J]. SPE Journal,2011,16(3):559−574. doi: 10.2118/127923-PA
|
[28] |
NASR-EL-DIN H A A,DE WOLF C A A,STANITZEK T,et al. Field treatment to stimulate a deep,sour,tight-gas well using a new,low-corrosion and environmentally friendly fluid[J]. SPE Production & Operations,2013,28(3):277−285.
|
[29] |
FRENIER W,BRADY M,AL-HARTHY S,et al. Hot oil and gas wells can be stimulated without acids[C]//SPE International Symposium and Exhibition on Formation Damage Control,2004:SPE-86522-MS.
|
[30] |
DE WOLF C A,NASR-EL-DIN H A,BOUWMAN A,et al. Corrosion rates of Cr- and Ni-based alloys with organic acids and chelating agents used in stimulation of deep wells[J]. SPE Production & Operations,2017,32(2):208−217.
|
[31] |
GOMAA I,MAHMOUD M,KAMAL M S. Sandstone acidizing using a low-reaction acid system[J]. Journal of Energy Resources Technology,2020,142(10):103008. doi: 10.1115/1.4047317
|
[32] |
ALMUBARAK T,NG J H,NASR-EL-DIN H. Chelating agents in productivity enhancement:A review[C]//SPE Oklahoma City Oil and Gas Symposium. SPE,2017:SPE-185097-MS.
|
[33] |
HONG NG J,ALMUBARAK T,NASR-EL-DIN H A. Low-carbon-steel corrosion at high temperatures by aminopolycarboxylic acids[J]. SPE Production & Operations,2018,33(1):131−144.
|
[34] |
赵博,文光才,孙海涛,等. 煤岩渗透率对酸化作用响应规律的试验研究[J]. 煤炭学报,2017,42(8):2019−2025.
ZHAO Bo,WEN Guangcai,SUN Haitao,et al. Experimental study on response law of permeability of coal to acidification[J]. Journal of China Coal Society,2017,42(8):2019−2025.
|
[35] |
俞英珍,金鲜花,傅佳亚. 钙离子螯合力测试方法及比较[J]. 印染助剂,2006,23(12):40−42. doi: 10.3969/j.issn.1004-0439.2006.12.012
YU Yingzhen,JIN Xianhua,FU Jiaya. Test method for Ca ion chelating power and comparison thereof[J]. Textile Auxiliaries,2006,23(12):40−42. doi: 10.3969/j.issn.1004-0439.2006.12.012
|
[36] |
沈淑英,魏艳,赵梅,等. 螯合铁离子能力测定方法比较[J]. 印染助剂,2009,26(7):50−52. doi: 10.3969/j.issn.1004-0439.2009.07.014
SHEN Shuying,WEI Yan,ZHAO Mei,et al. The comparison of test methods for Fe(Ⅲ) ion chelating power[J]. Textile Auxiliaries,2009,26(7):50−52. doi: 10.3969/j.issn.1004-0439.2009.07.014
|
[37] |
LEPAGE J N N,DE WOLF C A A,BEMELAAR J H H,et al. An environmentally friendly stimulation fluid for high-temperature applications[J]. SPE Journal,2011,16(1):104−110. doi: 10.2118/121709-PA
|
[38] |
TAYLOR K C,NASR-EL-DIN H A,AL-ALAWI M J. Systematic study of iron control chemicals used during well stimulation[J]. SPE Journal,1999,4(1):19−24. doi: 10.2118/54602-PA
|
[39] |
霍多特B B. 煤与瓦斯突出[M]. 宋士钊,王佑安,译. 北京:中国工业出版社,1966:318
XOAOT B B. Coal and gas outburst[M]. SONG Shizhao,WANG You’an,translation. Beijing:China Industry Press,1966:318 .
|
[1] | XU Junsong, PAN Pengzhi, CHEN Jianqiang, ZHAO Shankun, WU Zhenhua, LIU Xudong. Study on burst risk assessment of coal seam in folded area based on pre-mining stress back analysis[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(9): 35-45. DOI: 10.12438/cst.2022-0827 |
[2] | TANG Jupeng, REN Lingran, PAN Yishan, ZHANG Xin. Simulation test study on coal and gas outburst under conditions of high in-situ stress[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(2): 113-121. |
[3] | JU Wei, JIANG Bo, QIN Yong, WU Caifang, LAN Fengjuan, LI Ming, XU Haoran, WANG Shengyu. Distribution of in-situ stress and prediction of critical depth for deep coalbed methane in Enhong Block of eastern Yunnan region[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(2). |
[4] | CAO Mingliang, KANG Yongshang, DENG Ze, TIAN Bofan, ZHAO Qun, WANG Hongyan. Influence of coal rank and tectonic stress intensity on mechanical properties of coal rock[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (12). |
[5] | LIN Chen, XIE Xuecai. Study on tectonic stress environment based on Stereographic Projection Method[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (8). |
[6] | ZHAO Shankun, ZHANG Ningbo, ZHANG Guanghui, LI Zhiguo, SHU Longyong. Analysis on stress distribution law of deep stratum and effect of regional tectonics in Shuangyashan Coal Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (7). |
[7] | LI He LIN Baiquan HUANG Zhanbo TENG Fei YANG Wei GAO Yabin LIU Tong WANG Rui, . Stress and displacement evolution features of opening seam in mine cross cut based on different in- situ rock stress and orientations[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (10). |
[8] | YANG-Fan YANG Xiu-chun JIANG Bo ZHOU Ke CHEN Cai-hong, . Analysis on Tectonic Characteristics and Tectonic Stress Field in Baode Area[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (7). |
[9] | HUANG Xian-hua XU Ji-yuan YANG Cheng-yi ZHU Hong-qing, . Simulation Study on Relationship Between Ground Stress and Gas Pressure Gradient of Tectonic Outburst Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (5). |
[10] | Analysis on Measurement and Features of Deep Mine 3D Ground Stress Filed[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (8). |
1. |
陆伟,叶文钢,李金亮,钱冠雨,张青松,李金虎. 输送带温敏改性方法及火灾早期预警指标气体研究. 煤炭科学技术. 2025(01): 170-182 .
![]() | |
2. |
王银辉. 基于ReaxFF的不黏煤燃烧过程中自由基及主要燃烧产物生成规律研究. 矿业安全与环保. 2024(04): 80-89 .
![]() |