Advance Search
ZHANG Shuangbin,ZHAO Shufeng,GUO Hongyu,et al. Analysis of the difference between weathered coal and lignite in the conversion of biomethane[J]. Coal Science and Technology,2024,52(3):291−299. DOI: 10.13199/j.cnki.cst.2022-1945
Citation: ZHANG Shuangbin,ZHAO Shufeng,GUO Hongyu,et al. Analysis of the difference between weathered coal and lignite in the conversion of biomethane[J]. Coal Science and Technology,2024,52(3):291−299. DOI: 10.13199/j.cnki.cst.2022-1945

Analysis of the difference between weathered coal and lignite in the conversion of biomethane

Funds: 

Henan Outstanding Youth Fund Funding Project (222300420008); National Natural Science Foundation of China (42172195); 2020 Key Science and Technology Research and Development Funding Project of Jincheng City (202001002)

More Information
  • Received Date: November 16, 2022
  • Available Online: November 08, 2023
  • In order to find out the internal reasons for the difference in biological methane production between weathered coal and lignite, weathered coal and lignite were selected respectively, and the enriched and domesticated bacterial liquid was used as the source of bacteria. The internal mechanism of the difference in biological gas production between weathered coal and lignite was analyzed by biological gas production simulation, infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and 16 S rRNA test. The results showed that the biogas production potential of lignite (7.63 mL/g) was higher than that of weathered coal (3.24 mL/g). Compared with weathered coal, in the process of gas production, various groups of lignite fall off obviously, aromatic substances are more converted into other substances with small molecular weight, and phenolic carbon or ether carbon (C—O) oxidation is more obvious, which is conducive to the formation of more small molecular organic acids. Compared with weathered coal, lignite has more serious surface erosion and more pore cracks in the process of biological gas production. The diversity of bacteria and archaea in lignite is lower than that in weathered coal, but the main functional flora accounts for a large proportion. The proportion of Macellibacteroides and Lysinibacillus in bacteria reaches 68.05%, and the proportion of Methanosarcina and Methanobacterium in archaea reaches 89.99%, which is much larger than that of weathered coal. It plays a positive role in the degradation and utilization of organic matter in coal and can provide raw materials for subsequent methanogens. Therefore, lignite is more conducive to the utilization of microbial products to produce methane. Methane metabolism type of weathered coal is methyl nutrition hydrogen nutrition type different from lignite. Microorganisms in lignite can make better use of acetic acid as a carbon source, glucose and glycogen can be effectively degraded into pyruvate, strong oxidation (reduction), and produce ATP for biochemical reactions. The research results provide a theoretical reference for the mechanism of gas production difference between weathered coal and lignite, and provide practical significance for the future biomethanation utilization of weathered coal and lignite.

  • [1]
    刘淑琴,刘 欢,纪雨彤,等. 深部煤炭地下气化制氢碳排放核算及碳减排潜力分析[J]. 煤炭科学技术,2023,51(1):531−541.

    LIU Shuqin,LIU Huan,JI Yutong,et al. Carbon emission accounting and carbon reduction analysis for deep coal underground gasification to hydrogen[J]. Coal Science and Technology,2023,51(1):531−541.
    [2]
    赵 浩. 露天煤矿高质量安全发展形势分析与对策措施[J]. 煤矿安全,2022,53(7):251−256.

    ZHAO Hao. Analysis of development situation and countermeasures of high quality safety in open-pit coal mines[J]. Safety in Coal Mines,2022,53(7):251−256.
    [3]
    郗小明,秦 超,罗进成,等. 煤焦化与多元料浆气化优化集成制取合成甲醇原料气优势分析[J]. 煤化工,2018,46(1):30−33. doi: 10.3969/j.issn.1005-9598.2018.01.008

    CHI Xiaoming,QIN Chao,LUO Jincheng,et al. Advantage analysis of optimal-integrated system of coal coking with multi-component slurry gasification to feed gas for methanol synthesis[J]. Coal Chemical Industry,2018,46(1):30−33. doi: 10.3969/j.issn.1005-9598.2018.01.008
    [4]
    梅艳钢,王志青,张 郃,等. 碱金属迁移对煤焦气化反应性的原位探究[J]. 燃料化学学报,2021,49(6):735−741. doi: 10.1016/S1872-5813(21)60031-2

    MEI Yangang,WANG Zhiqing,ZHANG He,et al. In-situ study of effect of migrating alkali metals on gasification reactivity of coal char[J]. Journal of Fuel Chemistry and Technology,2021,49(6):735−741. doi: 10.1016/S1872-5813(21)60031-2
    [5]
    邹 涛,朱春鹏,张 瑜,等. 含油污泥与配合煤共热解煤焦的微观结构与气化反应特性[J]. 燃料化学学报,2020,48(2):137−143.

    ZHOU Tao,ZHU Chunpeng,ZHANG Yu,et al. Characteristics of microstructures and gasification reactivity of co-pyrolysis coal with oily sludge and blended coal[J]. Journal of Fuel Chemistry and Technology,2020,48(2):137−143.
    [6]
    司 硕. 生物钙脱硝技术在工业层燃炉中的应用[J]. 煤炭加工与综合利用,2021(10):93−96. doi: 10.16200/j.cnki.11-2627/td.2021.10.022

    SI Shuo. Application of biological calciumdenitration technology in layer burning industrial boiler[J]. Coal Processing & Comprehensive Utilization,2021(10):93−96. doi: 10.16200/j.cnki.11-2627/td.2021.10.022
    [7]
    龚艳艳. 煤燃烧过程中燃料型NOx生成及还原机理研究进展[J]. 煤质技术,2022,37(3):9−23. doi: 10.3969/j.issn.1007-7677.2022.03.002

    GONG Yanyan. Research progress on formation and reduction mechanism of fuel-NOx during coal combustion[J]. Coal Quality Technology,2022,37(3):9−23. doi: 10.3969/j.issn.1007-7677.2022.03.002
    [8]
    朱振武,禚玉群. 煤炭洗选中有害痕量元素的迁移与脱除[J]. 煤炭学报,2016,41(10):2434−2440. doi: 10.13225/j.cnki.jccs.2016.8003

    ZHU Zhenwu,ZHUO Yuqun. Migration and removal of toxic trace elements during coal washing[J]. Journal of China Coal Society,2016,41(10):2434−2440. doi: 10.13225/j.cnki.jccs.2016.8003
    [9]
    纪 栋,姚志松,张 陈,等. 餐厨垃圾厌氧发酵产沼气过程中的微生物群落结构解析[J]. 太阳能学报,2022,43(9):354−362. doi: 10.19912/j.0254-0096.tynxb.2020-1403

    JI Dong,YAO Zhisong,ZHANG Chen,et al. Analysis of microbial community structure in biogas production by anaerobic fermentation of kitchen waste[J]. Acta Energiae Solaris Sinica,2022,43(9):354−362. doi: 10.19912/j.0254-0096.tynxb.2020-1403
    [10]
    曹 麒,何雨恒,卓桂华,等. 高温条件下初始pH值对污泥-餐厨垃圾联合厌氧发酵产氢余物产CH4的影响[J]. 环境工程,2022,40(9):150−157.

    CAO Qi,HE Yuheng,ZHUO Guihua,et al. Effect on initial pH value on methane production from residue after anaerobic co-fermentative hudrogen production of sewage sludge and food waste under thermophilic operation[J]. Environmental Engineering,2022,40(9):150−157.
    [11]
    李 洋, 唐书恒, 陈 健, 等. 影响煤生物气化的物化特征及煤预处理的研究进展[J]. 微生物学报, 2022, 62(6): 2328−2339.

    LI Yang, TANG Shuheng, CHEN Jian, et al. Physicochemical characteristics affecting biological coal gasification and coal pretreatment[J]. Acta Microbiologica Sinica, 2022, 62(6): 2328−2339.
    [12]
    李春全,王丝蒂,汪欣林,等. 风化煤基催化材料的制备及其活化PMS降解苯酚[J]. 煤炭学报,2022,47(5):2067−2077. doi: 10.13225/j.cnki.jccs.2022.0181

    LI Chunquan,WANG Sidi,WANG Xinlin,et al. Preparation of weathered coal-based catalytic material and its performance in phenol degradation by activating peroxymonosulfate[J]. Journal of China Coal Society,2022,47(5):2067−2077. doi: 10.13225/j.cnki.jccs.2022.0181
    [13]
    郭红玉,李赛赛,沈 野,等. 不同风化程度煤的结构与生物产气效果的变化特征[J]. 安全与环境学报,2022,22(3):1510−1517. doi: 10.13637/j.issn.1009-6094.2021.0556

    GUO Hongyu,LI Saisai,SHEN Ye,et al. Variation characteristics of the structure and biological gas production effect of coal with different weathering degrees[J]. Journal of Safety and Environment,2022,22(3):1510−1517. doi: 10.13637/j.issn.1009-6094.2021.0556
    [14]
    郭红玉,李云嵩,李贤忠,等. 以风化煤为底物制取生物甲烷的潜力分析[J]. 煤炭学报,2020,45(3):1187−1194. doi: 10.13225/j.cnki.jccs.2019.0278

    GUO Hongyu,LI Yunsong,LI Xianzhong,et al. Potential analysis of biological methane production with weathered coal[J]. Journal of China Coal Society,2020,45(3):1187−1194. doi: 10.13225/j.cnki.jccs.2019.0278
    [15]
    刘 薇,李啸宇,何 环,等. 硫酸盐还原菌Desulfotomaculum reducens ZTS1厌氧降解昭通褐煤[J]. 微生物学报,2021,61(6):1610−1620.

    LIU Wei,LI Xiaoyu,HE Huan,et al. Anaerobic degradation of Zhaotong lignite by sulfate reducing bacterium Desulfotomaculum reducens ZTS1[J]. Acta Microbiologica Sinica,2021,61(6):1610−1620.
    [16]
    张怀文,姚义清,谢昌文. 不同联合预处理对褐煤厌氧发酵产甲烷的影响[J]. 煤田地质与勘探,2021,49(4):162−169. doi: 10.3969/j.issn.1001-1986.2021.04.019

    ZHANG Huaiwen,YAO Yiqing,XIE Changwen. Effects of different combined pretreatments on biogenic methane production by anaerobic digestion of lignite[J]. Coal Geology & Exploration,2021,49(4):162−169. doi: 10.3969/j.issn.1001-1986.2021.04.019
    [17]
    夏大平, 刘春兰, 陈振宏, 等. 不同煤阶煤孔隙结构与煤制生物甲烷的相互影响[J]. 煤炭转化, 2023, 46(1): 27−38.

    XIA Daping, LIU Chunlan, CHEN Zhenhong, et al. The interaction between pore structure of differennt rank coals and coal-to-biomethane[J]. Coal Conversion, 2023, 46(1): 27−38.
    [18]
    李兴凤,郭红光,张亦雯,等. NaOH预处理对无烟煤生物甲烷转化的影响[J]. 煤矿安全,2019,50(11):6−9. doi: 10.13347/j.cnki.mkaq.2019.11.002

    LI Xingfeng,GUO Hongguang,ZHANG Yiwen,et al. Effect of NaOH pretreatment on biomethane conversion in anthracite[J]. Safety in Coal Mines,2019,50(11):6−9. doi: 10.13347/j.cnki.mkaq.2019.11.002
    [19]
    侯 彪,王子升,周艺璇,等. 不同煤阶煤制生物甲烷的代谢功能差异性研究[J]. 煤炭科学技术,2021,49(12):119−126. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112015

    HOU Biao,WANG Zisheng,ZHOU Yixuan,et al. Difference of metabolic functions in biomethane production from different rank coals[J]. Coal Science and Technology,2021,49(12):119−126. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112015
    [20]
    SU Xianbo,ZHAO Weizhong,XIA Daping,et al. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam[J]. Biotechnology for Biofuels,2018,11(1):245−263. doi: 10.1186/s13068-018-1237-2
    [21]
    赵伟仲. 煤层本源菌制取生物甲烷的实验研究[D]. 焦作: 河南理工大学, 2019.

    ZHAO Weizhong. Experimental research on biomethane production from microorganism in situ coal seam[D]. Jiaozuo: Henan Polytechnic University, 2019.
    [22]
    PETERSEN Henriki,ROSENBERG Per,NYTOFT,Hansp. Oxygen groups in coals and alginite-rich kerogen revisited[J]. International Journal of Coal Geology,2008,74(2):93−113. doi: 10.1016/j.coal.2007.11.007
    [23]
    贾廷贵,李 璕,曲国娜,等. 不同变质程度煤样化学结构特征FTIR表征[J]. 光谱学与光谱分析,2021,41(11):3363−3369.

    JIA Tinggui,LI Xun,QU Guona,et al. FTIR characterization of chemical structures characteristics of coal samples with different metamorphic degrees[J]. Spectroscopy and Spectral Analysis,2021,41(11):3363−3369.
    [24]
    何 鑫,王文峰,章新喜,等. 低阶煤显微组分含氧官能团的分布特征与差异[J]. 煤炭学报,2021,46(9):2804−2812. doi: 10.13225/j.cnki.jccs.FX21.0695

    HE Xin,WANG Wenfeng,ZHANG Xinxi,et al. Distribution characteristics and differences of oxygen-containing functional groups in macerals of low rank coal[J]. Journal of China Coal Society,2021,46(9):2804−2812. doi: 10.13225/j.cnki.jccs.FX21.0695
    [25]
    YIN Yalin,GAO Chongyang,ZHAO Yangguo,et al. Electricity generation and dynamics characteristics of microbial community of microbial fuel cells started up with mixture of aerobic/anaerobic sludge[J]. Acta Microbiologica Sinica,2014,54(12):1471−1480.
    [26]
    LI Jinda,YI Mengwen,WANG Lili,et al. Isolation and screening of a strain of anaerobic electricity-producing phenol degrading bacteria and biological characteristics research[J]. Harbin University of Science and Technology.,2020,25(2):150−159.
    [27]
    GUU Hngyu,ZHANG Minglu,DONG Zhiwei,et al. The mechanisms of biogenic methane metabolism by synergistic biodegradation of coal and corn straw[J]. Bioresource Technology,2020,298:122577. doi: 10.1016/j.biortech.2019.122577
    [28]
    ZOU Hui,GAO Ming,YU Miao,et al. Methane production from food waste via mesophilic anaerobic digestion with ethanol pre-fermentation:Methanogenic pathway and microbial community analyses[J]. Bioresource Technology,2020,297:122450. doi: 10.1016/j.biortech.2019.122450
    [29]
    ZHAO Zhiqiang,WANG Jianfeng,LI Yang,et al. Why do DIETers like drinking:metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research,2020,171:115425. doi: 10.1016/j.watres.2019.115425
    [30]
    LIU Chuanqi, SUN Dezhi, ZHAO Zhiqiang, et al. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer[J]. Bioresource Technology, 2019, 291: 121877.
    [31]
    SAHA Shouvik, KURADE Mayurb, Ha Geeonsoo, et al. Syntrophic metabolism facilitates Methansarcina-led methanation in the anaerobic digestion of lipidic slaughterhouse waste[J]. Bioresource Technology, 2021, 335: 125250.
    [32]
    WANG Dexin, HAN Yuxing, HAN Hongjun, et al. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite[J]. Bioresource Technology, 2018, 257: 147−156.
    [33]
    POBEHEIM Herbert. , MUNK Bernhard. , LINDORFER Harold, et al. Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage[J]. Water Research. 2011, 45: 781−787.
    [34]
    GUO Hao, HUA Junjie, CHENG Jun, et al. Microbial electrochemistry enhanced electron transfer in lactic acid anaerobic digestion for methane production[J]. Journal of Cleaner Production, 2022, 358: 131983.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (68) PDF downloads (28) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return