Advance Search
MENG Xiangning,LIANG Yuntao,GUO Baolong,et al. Quantitative identification and mechanism of spontaneous coal combustion inhibition by halogen inhibitor[J]. Coal Science and Technology,2024,52(6):132−141. DOI: 10.12438/cst.2023-1849
Citation: MENG Xiangning,LIANG Yuntao,GUO Baolong,et al. Quantitative identification and mechanism of spontaneous coal combustion inhibition by halogen inhibitor[J]. Coal Science and Technology,2024,52(6):132−141. DOI: 10.12438/cst.2023-1849

Quantitative identification and mechanism of spontaneous coal combustion inhibition by halogen inhibitor

Funds: 

National Natural Science Foundation of China (52174229)

More Information
  • Received Date: December 05, 2023
  • Available Online: May 24, 2024
  • The spontaneous coal combustion seriously affects the safety production of coal mine, and halogenation is one of the main measures to prevent and control the spontaneous coal combustion. The prerequisite for optimizing the inhibition process and improving the inhibition effect is to master the physical and chemical inhibition mechanism of inhibitor. Therefore, it is particularly important to explore the main inhibition methods of spontaneous coal combustion by halogen inhibitor, and to determine the contribution ratio of the physical and chemical inhibition to coal seam. Based on this, a method was proposed to quantitatively identify the inhibition effect of halogen inhibitor. The representative MgCl2 inhibitor in halogenation was selected, the ultrasonic washer was used to repeatedly rinse the inhibiting and washing coal samples to obtain the experimental and reference coal samples. The change law of index gas concentration, cross point temperature, retarding rate and active functional group of different coal samples was investigated by temperature programmed experiments and infrared spectrum experiments. The physical and chemical retarding effect of halide retarder was studied from both macro and micro perspectives. The results indicated that the gas production concentration, cross-point temperature, inhibition rate and active functional group content of the washed and inhibited coal sample were significantly lower than those of the original coal sample, but higher than those of the inhibited coal sample. This suggested that the MgCl2 inhibitor had a synergistic effect on inhibiting the spontaneous coal combustion and possessed a dual physicochemical inhibition effect. In the initial stage of coal oxygen reaction, there was a greater physical resistance compared to chemical resistance. However, in the later stages of the reaction, the chemical resistance dominated and significantly surpassed the physical resistance. The chemical inhibition effect of MgCl2 was reflected in that it can react with the active substances in coal to form a relatively stable substance (ROCl) and magnesium complex (Mg(OH)Cl). This transformation significantly diminished the reactivity of coal, thereby mitigated the potential risk of coal self-heating. The contribution ratios of physical and chemical effects of MgCl2 inhibitors to Pingzhuang lignite were 56.37% and 43.63%, to Tongxin bituminous coal 57.91% and 42.09%, and to Baijigou anthracite 59.60% and 40.40%. With the increase of metamorphism degree of coal samples, the contribution ratio of physical resistance increased, and the contribution ratio of chemical resistance decreased. The chemical resistance ratio of Pingzhuang lignite was 1.08 times that of Baijigou anthracite. This paper was of great significance to the mechanism of the rich halide inhibitor and provides theoretical guidance for optimizing the fire prevention process.

  • [1]
    邓军,李鑫,王凯,等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术,2024,52(1):154−177.

    DENG Jun,LI Xin,WANG Kai,et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology,2024,52(1):154−177.
    [2]
    王连聪,梁运涛,罗海珠. 我国矿井热动力灾害理论研究进展与展望[J]. 煤炭科学技术,2018,46(7):1−9.

    WANG Liancong,LIANG Yuntao,LUO Haizhu. Research progress and outlook on theory of thermodynamic disaster of coal mine in china[J]. Coal Science and Technology,2018,46(7):1−9.
    [3]
    张俊文,杨虹霞. 2005—2019年我国煤矿重大及以上事故统计分析及安全生产对策研究[J]. 煤矿安全,2021,52(12):261−264.

    HANG Junwen,YANG Hongxia. Statistical analysis of major and above accidents in coal mines in China from 2005 to 2019 and study on countermeasures for safeproduction[J]. Safety in Coal Mines,2021,52(12):261−264.
    [4]
    秦波涛,蒋文婕,史全林,等. 矿井粉煤灰基防灭火技术研究进展[J]. 煤炭科学技术,2023,51(1):329−342.

    QIN Botao,JIANG Wenjie,SHI Quanlin,et al. Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines[J]. Coal Science and Technology,2023,51(1):329−342.
    [5]
    李金亮,陆伟,徐俊. 化学阻化剂防治煤自燃及其阻化机理分析[J]. 煤炭科学技术,2012,40(1):50−53.

    LI Jinliang,LU Wei,XU Jun. Coal spontaneous combustion prevention and cure with chemical retarder as well as analysis on retarding mechanism[J]. Coal Science and Technology,2012,40(1):50−53.
    [6]
    邓军,白祖锦,肖旸,等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全,2020,51(10):118−125.

    DENG Jun,BAI Zujin,XIAO Yang,et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Safety in Coal Mines,2020,51(10):118−125.
    [7]
    DENG Jun,YANG Yi,ZHANG Yanni,et al. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion[J]. Energy,2018,160:1174−85. doi: 10.1016/j.energy.2018.07.040
    [8]
    彭本信. 煤的自然发火阻化剂及其阻化机理[J]. 煤炭学报,1980,5(3):38−47.

    PENG Benxin. Spontaneous ignition retarder of coal and its retarding mechanism[J]. Journal of China Coal Society,1980,5(3):38−47.
    [9]
    郑兰芳. 阻化剂抑制煤炭氧化自燃性能的实验研究[D]. 西安:西安科技大学,2009:18−24.

    ZHENG Lanfang. Experimental study on inhibition of oxidation spontaneous combustion of coal with retarder [D]. Xi’an:Xi’an University of Science and Technology,2009:18−24.
    [10]
    LU Wei,GUO Baolong,QI Guansheng,et al. Experimental study on the effect of preinhibition temperature on the spontaneous combustion of coal based on an MgCl2 solution[J]. Fuel,2020,265:117032.
    [11]
    王雪峰,王继仁,邓存宝,等. Ca2+对煤中含氮活性基团阻化效应研究[J]. 中国安全科学学报,2012,22(5):50−55.

    WANG Xuefeng,WANG Jiren,DENG Cunbao,et al. Inhibition effect of Ca2+ on nitrogen-containing active groups in coal[J]. China Safety Science Journal,2012,22(5):50−55.
    [12]
    TANG Yibo. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal[J]. Journal of the Energy Institute,2018,91(5):639−645. doi: 10.1016/j.joei.2017.06.006
    [13]
    LYU Hongpeng,LI Bei,DENG Jun,et al. A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion[J]. Energy,2021,231:121093. doi: 10.1016/j.energy.2021.121093
    [14]
    郑兰芳. 抑制煤氧化自燃的盐类阻化剂性能分析[J]. 煤炭科学技术,2010,38(5):70−72.

    ZHENG Lanfang. Performance analysis of salt retarders for inhibiting spontaneous combustion of coal[J]. Coal Science and Technology,2010,38(5):70−72.
    [15]
    MIAO Guodong,LI Zenghua,MENG Qingya,et al. Experimental research on the emission of higher molecular weight gases during coal oxidation[J]. Fuel,2021,300:120906. doi: 10.1016/j.fuel.2021.120906
    [16]
    邓军,王楠,文虎,等. 胶体防灭火材料阻化性能试验研究[J]. 煤炭科学技术,2011,39(7):49−52.

    DENG Jun,WANG Nan,WEN Hu,et al. Experiment study on retarding performances of gel fire resistance material[J]. Coal Science and Technology,2011,39(7):49−52.
    [17]
    仲晓星,王德明,陆伟,等. 交叉点温度法对煤氧化动力学参数的研究[J]. 湖南科技大学学报(自然科学版),2007,22(1):13−16.

    ZHONG Xiaoxing,WANG Deming,LU Wei,et al. Study on kinetic parameters of coal oxidation by cross-point temperature method[J]. Journal of Hunan University of Science and Technology (Natural Science Edition),2007,22(1):13−16.
    [18]
    王寅,王海晖. 基于交叉点温度法煤自燃倾向性评定指标的物理内涵[J]. 煤炭学报,2015,40(2):377−382.

    WANG Yin,WANG Haihui. Physical nature of the indexes for ranking self-heating tendency of coal based on the conventional crossing point temperature technique[J]. Journal of China Coal Society,2015,40(2):377−382.
    [19]
    QIAO Li,DENG Cunbao,DAI Fengwei,et al. Experimental study on a metal-chelating agent inhibiting spontaneous combustion of coal[J]. Energy & Fuels,2019,33(9):9232−9240.
    [20]
    GUO Shengli,ZHOU Yan,YUAN Shujie,et al. Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion[J]. Energy,2021,229:120651. doi: 10.1016/j.energy.2021.120651
    [21]
    QI Xuyao,WANG Deming,XIN Haihui,et al. In situ FTIR study of real-time changes of active groups during oxygen-free reaction of coal[J]. Energy Fuels,2013,27(6):3130−3136. doi: 10.1021/ef400534f
    [22]
    邓军,周佳敏,白祖锦,等. 瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J]. 煤炭科学技术,2023,51(1):304−312.

    DENG Jun,ZHOU Jiamin,BAI Zujin,et al. Effect of gas on microstructure and thermal reactivity of coal during low temperature oxidation[J]. Coal Science and Technology,2023,51(1):304−312.
    [23]
    HUANG Qiongzhu,LU Guimin,WANG Jin,et al. Thermal decomposition mechanisms of MgCl2•6H2O and MgCl2•H2O[J]. Journal of Analytical and Applied Pyrolysis,2011,91(1):159−164. doi: 10.1016/j.jaap.2011.02.005
    [24]
    ZHONG Xiaoxing,QIN Botao,DOU Guolan,et al. A chelated calcium-procyanidineattapulgite composite inhibitor for the suppression of coal oxidation[J]. Fuel,2018,217:680−688. doi: 10.1016/j.fuel.2017.12.072
    [25]
    LI Jinhu,LI Zenhua,YANG Yongliang,et al. Laboratory study on the inhibiting effect of free radical scavenger on coal spontaneous combustion[J]. Fuel Process Technology,2018,171:350-360.
  • Related Articles

    [1]YAN Chaochao, ZHANG Guoen, CHANG Tong, WANG Pengfei, WANG Tianping, WU Changquan. Mechanical analysis of floor deformation and floor heave control technology for gob-side entry retaining in medium thick coal seam with shallow cover depth[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(10): 11-20. DOI: 10.12438/cst.2023-1382
    [2]CHANG Jucai, GUO Yijun, WU Bowen, SHI Wenbao, QI Chao, WANG Hongda. Study on failure characteristics and control of roof separation with weak interlayer of deep gob-side entry driving[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(9): 88-102. DOI: 10.12438/cst.2024-0557
    [3]WANG En, XIE Shengrong, CHEN Dongdong, LIU Ruipeng, FENG Shaohua. Failure mechanism and its control of surrounding rock for gob-side entry driving with narrow coal pillar in the working face with goaf on both sides[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(11): 41-50. DOI: 10.12438/cst.2021-1036
    [4]GAO Yongge, ZHANG Qiang, NIU Chu, ZHANG Kai. Analysis of actual measurement of cracks in overlying rock on roof of gob-side entry retaining during secondary mining[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(3): 78-84.
    [5]LIU Ju, HE Ruimin, YANG Peng, TANG Jiaxuan, WU Jianhua, KONG Deming. Research on deformation and failure law and control of roof in deep gob-side entry retaining[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (7).
    [6]Cui Jianjun. Study on deformation and failure mechanism and control technology of deeply gob-side entry driving[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (7).
    [7]Hua Xinzhu Li Zhihua Li Yingfu Yang Peng Kan Jiaguang, . Analysis on floor heave features of large cross section gob-side entry retaining in deep mine[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (9).
    [8]Zhang Yujun Gao Chao, . Overburden rock failure features of steep thick seam horizontal slicing full- mechanized caving mining[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (1).
    [9]ZHANG Yong ZHANG Bao LIU Jin-kai ZHAO Jian-jian LYU Wei-wei LI Qi, . Damage and Slip Mechanism of Floor in Longwall Mining on the Strike of Steep and Thick Coal Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (10).
    [10]HUA Xin-zhu Lu Xiao-yu Li Ying-fu, . Prevention and Control Technology of Floor Heave in Gob-side Entry Retaining with Large Section of Deep Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
  • Cited by

    Periodical cited type(31)

    1. 秦翥. 带式输送机智能化发展现状研究. 煤矿机械. 2025(01): 73-76 .
    2. 王春青,韩国庆,魏大伟,胡开庚,袁志金. 煤矿带式输送机AI视频监控系统与巡检机器人的对比研究. 煤矿机械. 2025(03): 98-100 .
    3. 方新秋,吴洋,宋扬,陈宁宁,丰宇龙,冯豪天,贺德幸,乔富康. 基于FBG传感器的带式输送机故障监测研究. 煤炭科学技术. 2025(01): 326-340 . 本站查看
    4. 董礼,程丽敏,赵博,王雁冰,商志强,朱盼盼. 基于改进模式识别的无人值守风电场群组机器人集中巡检研究. 可再生能源. 2025(03): 346-352 .
    5. 王洪磊,郭鑫,张亦凡,张俊升. 煤质煤量全面在线检测技术发展现状及应用进展. 煤炭科学技术. 2024(02): 219-237 . 本站查看
    6. 赵亮. 矿用带式输送机自动监控巡检系统分析. 现代制造技术与装备. 2024(01): 197-199 .
    7. 邵立新. 煤矿带式输送机巡检机器人关键技术研究. 机械管理开发. 2024(03): 192-193+196 .
    8. 田立勇,唐瑞,于宁,杨秀宇,秦文光. 带式输送机不停机更换托辊机器人研究与应用. 中国机械工程. 2024(05): 938-949 .
    9. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 .
    10. 盛彬,吴利刚,张楠. 融合轻量化神经网络的矿用输送带钢芯损伤检测方法. 控制工程. 2024(07): 1254-1262 .
    11. 徐明辉. 煤矿带式输送机综合控制技术的运用研究. 内蒙古煤炭经济. 2024(13): 130-132 .
    12. 高飞. 基于改进DDNet的皮带输送机位移故障诊断研究. 计算机测量与控制. 2024(08): 47-54 .
    13. 程德强,钱建生,郭星歌,寇旗旗,徐飞翔,顾军,高亚超,赵金升. 煤矿安全生产视频AI识别关键技术研究综述. 煤炭科学技术. 2023(02): 349-365 . 本站查看
    14. 蒋社想,周馨蕊. 带式输送机智能巡检系统设计. 煤炭技术. 2023(05): 203-206 .
    15. 桂改花,苑占江. 基于改进BP-PID的带式输送机速度控制方法. 工矿自动化. 2023(05): 104-111 .
    16. 李一文,陈湘源,张海峰. 煤矿井下巡检机器人机电转换充电方法. 自动化与仪表. 2023(06): 39-44 .
    17. 常健. 面向煤矿巡检任务的新型仿生爬线机器人关键技术. 煤矿安全. 2023(06): 244-248 .
    18. 秦伟,陈湘源,张海峰. 基于多轮驱动同步控制系统的矿用巡检机器人设计. 煤矿机械. 2023(08): 1-5 .
    19. 魏学平. 皮带运输机巡检机器人数据处理系统设计与实现. 机械工程与自动化. 2023(04): 144-146 .
    20. 范高鹏. 带式输送机自动监控巡检系统的设计应用. 江西煤炭科技. 2023(03): 238-240 .
    21. 蔺恩忠. 煤矿带式输送机轴承监测诊断系统应用研究. 科技资讯. 2023(16): 62-65 .
    22. 吴珊. 带式输送机托辊性能的分析及优化. 机械管理开发. 2023(10): 43-45 .
    23. 胡金良. 基于带式输送机的智能巡检研究. 中国安全科学学报. 2023(S1): 85-90 .
    24. 张立峰,武小芳. 基于PAC的输煤皮带巡检机器人设计与研究. 中国设备工程. 2023(23): 198-200 .
    25. 李洁. 煤矿多级带式输送机系统的节能控制研究. 机械管理开发. 2023(12): 202-204 .
    26. 张海峰. 煤矿挂轨式巡检机器人爬坡助力装置. 自动化与仪表. 2022(10): 48-51 .
    27. 王鹏,赵红菊. 煤矿场景下基于RGBD的视觉导航技术. 煤矿安全. 2022(11): 136-140 .
    28. 张超力,武国旺,孟超,王志红,刘红欣,梁国杰,霍斌洋,薛长站,苏周,梅东升. 输煤皮带巡检机器人系统上位机软件设计与实现. 能源与节能. 2022(12): 183-185 .
    29. 毛清华,李世坤,胡鑫,薛旭升,姚丽杰. 基于改进YOLOv7的煤矿带式输送机异物识别. 工矿自动化. 2022(12): 26-32 .
    30. 樊琛,王毅. 基于浮游式变压器巡检机器人系统设计与试验. 粘接. 2022(12): 174-177+191 .
    31. 刘寿恩. 露天输送带智能巡检系统设计. 数字技术与应用. 2021(11): 199-201 .

    Other cited types(5)

Catalog

    Article views (106) PDF downloads (51) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return