ZHANG Yujun,ZHANG Zhiwei,XIAO Jie,et al. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology,2023,51(2):283−291
. DOI: 10.13199/j.cnki.cst.2022-1698Citation: |
ZHANG Yujun,ZHANG Zhiwei,XIAO Jie,et al. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology,2023,51(2):283−291 . DOI: 10.13199/j.cnki.cst.2022-1698 |
Due to the wide distribution, large quantity, strong invisibility and difficult detection, the activated water inrush of buried fault on the bottom strata has become one of the main forms of deep mining water inrush. According to the development scale and spatial location of buried fault, three modes of water inrush are summarized: water inrush due to connection of floor and buried fault, water inrush of upper and lower buried fault. According to the water inrush mode of the floor of buried fault at the bottom of coal seam above stressed water body, the development of induced floor stress during mining, the extension of buried fault and the evolution of water inrush passages during coal mining are studied by mechanical analysis, physical simulation of floor water inrush and FLAC3D numerical modelling. The results show that with the advance of working surface, the floor rock close to the coal seam is subjected to a compression-unloading-recovery process forming mining-induced failure zone. The stress within the floor is horizontal “S” shape with a boundary of the working face. Under the effect of mining-water pressure-buried fault, the buried fault blocks the extraction-induced stress with the movement of the working face. The degree of damage of the mining pressure-hydraulic pressure of the buried fault is earlier and more serious which is more likely to induce the development of water conducting fractures. The pre-existing fractures of buried fault expands and develops upward in the opposite direction of advance of the working face, forming the water inrush passages by connecting with the mining-induced destruction zone. The rise of the pressured water is closely related to the mining fracture development. The rise intensity of mining-induced pressured water and the range of strong seepage area develop gradually with the advance of the working face. The buried fault mining area above the hidden fault. The amount of water increases gradually with the advance of the working surface. On the basis of the division of the floor with buried fault into “buried fault mining activation area, water blocking area and mining-induced area”, the water inrush mechanism of floor containing buried fault above the pressurized water is revealed.
[1] |
彭苏萍. 深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J]. 煤,2008(2):1−11. doi: 10.3969/j.issn.1005-2798.2008.02.001
PENG Suping. Present study and development trend of the deepen coal resource distribution and mining geologic evaluation[J]. Coal,2008(2):1−11. doi: 10.3969/j.issn.1005-2798.2008.02.001
|
[2] |
武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.
WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
|
[3] |
何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803−2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803−2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
|
[4] |
董书宁,虎维岳. 中国煤矿水害基本特征及其主要影响因素[J]. 煤田地质与勘探,2007,35(5):34−37. doi: 10.3969/j.issn.1001-1986.2007.05.009
DONG Shuning,HU Weiyue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. Coal Geology & Exploratioon,2007,35(5):34−37. doi: 10.3969/j.issn.1001-1986.2007.05.009
|
[5] |
魏久传,李白英. 承压水上采煤安全性评价[J]. 煤田地质与勘探,2000,28(4):57−59. doi: 10.3969/j.issn.1001-1986.2000.04.018
WEI Jiuchuan,LI Baiying. Security evaluation of coal mining above the confiend aquifers[J]. Coal Geolgy & Exploration,2000,28(4):57−59. doi: 10.3969/j.issn.1001-1986.2000.04.018
|
[6] |
文志杰,景所林,宋振骐,等. 采场空间结构模型及相关动力灾害控制研究[J]. 煤炭科学技术,2019,47(1):52−61. doi: 10.13199/j.cnki.cst.2019.01.007
WEN Zhijie,JING Suolin,SONG Zhenqi,et al. Study on coal face spatial structure model and control related dynamic disasters[J]. Coal Science and Technology,2019,47(1):52−61. doi: 10.13199/j.cnki.cst.2019.01.007
|
[7] |
陈军涛,武 强,尹立明,等. 高承压水上底板采动岩体裂隙演化规律研究[J]. 煤炭科学技术,2018,46(7):54−60,140. doi: 10.13199/j.cnki.cst.2018.07.008
CHEN Juntao,WU Qiang,YIN Liming,et al. Law of crack evolution in floor rock mass above high confined water[J]. Coal Science and Technology,2018,46(7):54−60,140. doi: 10.13199/j.cnki.cst.2018.07.008
|
[8] |
张风达. 深部采空区煤层底板滞后破坏特征[J]. 煤矿安全,2020,51(7):42−47. doi: 10.13347/j.cnki.mkaq.2020.07.009
ZHANG Fengda. Delayed failure characteristics of deep coal seam floor in goaf[J]. Safety in Coal Mines,2020,51(7):42−47. doi: 10.13347/j.cnki.mkaq.2020.07.009
|
[9] |
王连国,韩 猛,王占盛,等. 采场底板应力分布与破坏规律研究[J]. 采矿与安全工程学报,2013,30(3):317−322.
WANG Lianguo,HAN Meng,WANG Zhansheng,et al. Stress distribution and damage law of mining floor[J]. Journal of Mining & Safety Engineering,2013,30(3):317−322.
|
[10] |
田雨桐,张平松,吴荣新,等. 煤层采动条件下断层活化研究的现状分析及展望[J]. 煤田地质与勘探,2021,49(4):60−70. doi: 10.3969/j.issn.1001-1986.2021.04.008
TIAN Yutong,ZHANG Pingsong,WU Rongxin,et al. Research status and prospect of fault activation under coal mining conditions[J]. Coal Geology & Exploration,2021,49(4):60−70. doi: 10.3969/j.issn.1001-1986.2021.04.008
|
[11] |
刘志军,胡耀青. 承压水上采煤断层突水的固流耦合研究[J]. 煤炭学报,2007,32(10):1046−1050. doi: 10.3321/j.issn:0253-9993.2007.10.009
LIU Zhijun,HU Yaoqing. Solid-liquid coupling study on water inrush through faults in coal m ining above confined aquifer[J]. Journal of China Coal Society,2007,32(10):1046−1050. doi: 10.3321/j.issn:0253-9993.2007.10.009
|
[12] |
王进尚,姚多喜,黄 浩. 煤矿隐伏断层递进导升突水的临界判据及物理模拟研究[J]. 煤炭学报,2018,43(7):2014−2020. doi: 10.13225/j.cnki.jccs.2017.1252
WANG Jinshang,YAO Duoxi,HUANG Hao. Critical criterion and physical simulation research on progressive ascending water inrush inhidden faults of coal mines[J]. Journal of China Coal Society,2018,43(7):2014−2020. doi: 10.13225/j.cnki.jccs.2017.1252
|
[13] |
王进尚,姚多喜. 承压水上含隐伏断层突水动态监测物理模拟研究[J]. 地下空间与工程学报,2022,18(2):681−689.
WANG Jinshang,YAO Duoxi. Physical simulation study on dynamic monitoring of water inrush from concealed fault in confined water[J]. Chinese Journal of Underground Space and Engineering,2022,18(2):681−689.
|
[14] |
张 鹏,朱学军,孙文斌,等. 采动诱发充填断层活化滞后突水机制研究[J]. 煤炭科学技术,2022,50(3):136−143. doi: 10.13199/j.cnki.cst.2021-0809
ZHANG Peng,ZHU Xuejun,SUN Wenbin,et al. Study on mechanism of delayed water inrush caused by mining induced filling fault activation[J]. Coal Science and Technology,2022,50(3):136−143. doi: 10.13199/j.cnki.cst.2021-0809
|
[15] |
李连崇,唐春安,李 根,等. 含隐伏断层煤层底板损伤演化及滞后突水机理分析[J]. 岩土工程学报,2009,31(12):1838−1844. doi: 10.3321/j.issn:1000-4548.2009.12.006
LI Lianchong,TANG Chunan,LI Gen,et al. Damage evolution and delayed groundwater inrush from micro faults in coal seam floor[J]. Chinese Journal of Geotechnical Engineering,2009,31(12):1838−1844. doi: 10.3321/j.issn:1000-4548.2009.12.006
|
[16] |
丁建新. 不同倾角隐伏断层条件下的底板突水模拟研究[J]. 中国煤炭地质,2021,33(6):47−53. doi: 10.3969/j.issn.1674-1803.2021.06.08
DING Jianxin. Simulative study on floor water bursting in conditions of buried fault with differen[J]. Coal Geology of China,2021,33(6):47−53. doi: 10.3969/j.issn.1674-1803.2021.06.08
|
[17] |
张培森,颜 伟,张文泉,等. 含隐伏断层煤层回采诱发底板突水影响因素研究[J]. 采矿与安全工程学报,2018,35(4):765−772. doi: 10.13545/j.cnki.jmse.2018.04.014
ZHANG Peisen,YAN Wei,ZHANG Wenquan,et al. Study on factors influencing groundwater inrush induced by backstopping of a coal seam with a hidden fault[J]. Journal of Mining & Safety Engineering,2018,35(4):765−772. doi: 10.13545/j.cnki.jmse.2018.04.014
|
[18] |
刘伟韬,刘士亮,廖尚辉,等. 断层影响下底板突水通道研究[J]. 煤炭工程,2015,47(12):85−88.
LIU Weitao,LIU Shiliang,LIAO Shangwei,et al. Study on water inrush passage from floor affected by fault[J]. Coal Engineering,2015,47(12):85−88.
|
[19] |
陈亮亮,王恩营,廉有轩. 煤层底板隐伏断层突水危险性数值模拟分析[J]. 煤炭科学技术,2015,43(S1):41−44.
CHEN Liangliang,WANG Enying,LIAN Youxuan. Numerical simulation analysis of water inrush risk of buried faults in coal seam floor[J]. Coal Science and Technology,2015,43(S1):41−44.
|
[20] |
张志巍,张玉军,张风达. 采动与隐伏断层双重作用下底板破坏特征[J]. 煤矿安全,2021,52(1):194−199. doi: 10.13347/j.cnki.mkaq.2021.01.037
ZHANG Zhiwei,ZHANG Yujun,ZHANG Fengda. Double function of traction and concealed fault[J]. Safety in Coal Mines,2021,52(1):194−199. doi: 10.13347/j.cnki.mkaq.2021.01.037
|
[21] |
杨登峰,陈忠辉,刘 鑫,等. 含隐伏断层煤矿底板采动突水规律数值模拟[J]. 煤矿安全,2015,46(11):193−195. doi: 10.13347/j.cnki.mkaq.2015.11.054
YANG Dengfeng,CHEN Zhonghui,LIU Xin,et al. Numerical simulation of mining - induced water bursting law of coal floor with hidden faults[J]. Safety in Coal Mines,2015,46(11):193−195. doi: 10.13347/j.cnki.mkaq.2015.11.054
|
[22] |
周群力. 岩石压剪断裂判据及其应用[J]. 岩土工程学报,1987,9(3):33−37. doi: 10.3321/j.issn:1000-4548.1987.03.004
ZHOU Qunli. Rock compressive shear fracture criterion and its application[J]. Chinese Journal of Geotechnical Engineering,1987,9(3):33−37. doi: 10.3321/j.issn:1000-4548.1987.03.004
|
[23] |
孙文斌,张士川. 深部采动底板突水模拟试验系统的研制与应用[J]. 岩石力学与工程学报,2015,34(S1):3274−3280. doi: 10.13722/j.cnki.jrme.2014.0538
SUN Wenbin,ZHANG Shichuan. Development of floor water invasion of mining influence simulation testing system and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):3274−3280. doi: 10.13722/j.cnki.jrme.2014.0538
|
[24] |
张士川,郭惟嘉,孙文斌,等. 深部开采隐伏构造扩展活化及突水试验研究[J]. 岩土力学,2015,36(11):3111−3120. doi: 10.16285/j.rsm.2015.11.010
ZHANG Shichuan,GUO Weijia,SUN Wenbin,et al. Experimental research on extended activation and water inrush of concealed structure in deep mining[J]. Rock and Soil Mechanics,2015,36(11):3111−3120. doi: 10.16285/j.rsm.2015.11.010
|
[25] |
张玉军,张风达,张志巍,等. 采动煤层底板层次性破坏特征全空间多参量协同监测[J]. 煤炭科学技术,2022,50(2):86−94. doi: 10.13199/j.cnki.cst.2021-0170
ZHANG Yujun,ZHANG Fengda,ZHANG Zhiwei,et al. Full-space multi-parameter cooperative monitoring of failure hierarchy characteristics of mining coal seam floor[J]. Coal Science and Technology,2022,50(2):86−94. doi: 10.13199/j.cnki.cst.2021-0170
|
1. |
秦翥. 带式输送机智能化发展现状研究. 煤矿机械. 2025(01): 73-76 .
![]() | |
2. |
王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 .
![]() | |
3. |
曹金生,武立波,孙萌萌,刘惠阳,杨嘉伟. 煤气化渣改良黄土的力学特性试验分析. 中国科技论文. 2024(01): 23-32 .
![]() | |
4. |
张鹏,麻豪洲,李博,董英伟,王学文. 不同地形条件下刮板输送机输运效率及链环疲劳寿命. 中国粉体技术. 2024(02): 45-59 .
![]() | |
5. |
韩培强,胡而已,叶兰,冯智愚,张卫伟. 智能矿山数据质量管理研究及实践. 中国煤炭. 2024(02): 70-76 .
![]() | |
6. |
王国法,潘一山,赵善坤,庞义辉,何勇华,魏文艳. 冲击地压煤层如何实现安全高效智能开采. 煤炭科学技术. 2024(01): 1-14 .
![]() | |
7. |
张凯. 液压支架自动化后人工调控策略推荐系统. 山西焦煤科技. 2024(02): 33-36+41 .
![]() | |
8. |
张强,刘伟,王聪,苏金鹏,刘峻铭,顾颉颖,张润鑫. 刮板输送机多永磁电机串联驱动新模式及关键技术. 煤炭科学技术. 2024(02): 238-252 .
![]() | |
9. |
吕阳龙. 煤矿智能化开采技术创新与发展研究. 当代化工研究. 2024(05): 146-148 .
![]() | |
10. |
吴晓春. 煤矿智能识别监测预警平台研究及应用. 中国煤炭. 2024(03): 97-102 .
![]() | |
11. |
付翔,李浩杰,张锦涛,王然风,王宏伟,秦一凡. 综采液压支架中部跟机多模态人机协同控制系统. 煤炭学报. 2024(03): 1717-1730 .
![]() | |
12. |
伍永平,杜玉乾,解盘石,王红伟,胡博胜,闫壮壮,王同,胡涛. 大倾角煤层伪俯斜工作面平行四边形液压支架结构设计与运动响应. 煤炭科学技术. 2024(04): 314-325 .
![]() | |
13. |
韩会军,王国法,许永祥,张金虎,雷声,李艳鹏. 6~10 m厚煤层超大采高液压支架及其工作面系统自适应智能耦合控制. 煤炭科学技术. 2024(05): 276-288 .
![]() | |
14. |
马宏伟,王赛赛,王川伟,薛力猛,张恒,孙思雅. 短横轴截割机器人直墙拱形巷道自动成形控制方法. 西安科技大学学报. 2024(03): 418-429 .
![]() | |
15. |
李娟莉,郭清杰,高波,边强,王冬波. 基于数字孪生的液压支架群跟机工艺虚拟调试方法. 煤炭科学技术. 2024(06): 197-205 .
![]() | |
16. |
党保全,郭立全,张延喜,任永乐,李圣林. 煤矿岩巷TBM掘进随掘地震信号特征及其应用. 工矿自动化. 2024(06): 46-53+60 .
![]() | |
17. |
韩会军,韩春福,李明忠,张金虎,张权,曾明胜. 10 m超大采高智能化开采关键技术及装备研究. 中国煤炭. 2024(07): 82-90 .
![]() | |
18. |
汪莹,祖子帅,王振华. 基于智能化矿山数据分类与编码规范的元数据标准构建方法. 工矿自动化. 2024(07): 130-135+146 .
![]() | |
19. |
邱锦波,刘聪,吴昊坤,庄德玉,朱胜强. 采煤机智能化发展现状及关键技术展望. 工矿自动化. 2024(07): 64-78 .
![]() | |
20. |
张鑫媛,杨欢,王波,苏乐,程永军,杨雄伟,王欢乐,曹现刚,赵江滨. 基于动态离散元的机头卸载效率提升方法. 机械设计与研究. 2024(04): 98-103 .
![]() | |
21. |
吴方朋,关士远,任伟. 综采工作面顶板与煤壁交线提取算法研究. 煤矿机械. 2024(09): 11-14 .
![]() | |
22. |
王睿,申亚亚. 基于TOGAF的煤炭质量数据服务管理平台分析与设计. 煤炭加工与综合利用. 2024(08): 100-106 .
![]() | |
23. |
贾红娟,殷智昆,王祥龙,李俊. 双/四焊枪堆焊设备研发及三机槽体再制造应用. 陕西煤炭. 2024(10): 168-171+184 .
![]() | |
24. |
徐永福,许腾飞,杜波,刘劲军. 多绳缠绕式提升机试验台设计研究. 矿山机械. 2024(09): 24-28 .
![]() | |
25. |
李磊,许春雨,宋建成,田慕琴,宋单阳,张杰,郝振杰,马锐. 基于PSO-ELM的综采工作面液压支架姿态监测方法. 工矿自动化. 2024(08): 14-19 .
![]() | |
26. |
陈腾杰,李永安,张之好,林斌. 基于改进YOLOv8n+DeepSORT的带式输送机异物检测及计数方法. 工矿自动化. 2024(08): 91-98 .
![]() | |
27. |
马程,雷鹏,黄天尘,张晓利,叶鸥. 基于RBF神经网络的煤矿井下带式输送机节能优化研究. 能源与环保. 2024(09): 207-212 .
![]() | |
28. |
吴群英,胡俭,刘凯,李杨,谢晓深,张德生. 浅埋多煤层群协调绿色开采关键技术研发与实践. 煤炭科学技术. 2024(09): 19-30 .
![]() | |
29. |
申斌学. 基于矿山工业互联网的选煤厂智能管控体系设计与关键技术. 煤炭科学技术. 2024(09): 210-219 .
![]() | |
30. |
李明忠,赵文革,闫汝瑜,王家臣,雷亚军,杨征,韩会军,张金虎,冯彦军,张德生,黄志增. 超高与超长工作面高效综采关键技术及装备发展现状与展望. 煤炭科学技术. 2024(09): 199-209 .
![]() | |
31. |
秦翥. 煤机装备标准全生命周期管理系统研究. 煤矿机械. 2024(11): 180-183 .
![]() | |
32. |
王国法,庞义辉. 煤炭工业发展关键技术突破与超级煤矿建设. 煤炭工程. 2024(10): 1-11 .
![]() | |
33. |
杨森森,李海涛,杜伟升,薛珊珊. 矿山知识图谱构建的实体关系抽取方法研究. 煤炭技术. 2024(11): 259-263 .
![]() | |
34. |
王启飞,王俊龙,刘昊霖,赵逸涵,孙英峰,李蓓. 煤矿安全风险分析的文本数据模型与集成分析平台. 安全与环境学报. 2024(11): 4358-4365 .
![]() | |
35. |
符纪日,刘霞,何正午,许峰. 基于视觉和十字激光的凿岩台车位姿检测方法. 矿山机械. 2024(11): 1-7 .
![]() | |
36. |
付文俊,贾振刚,罗应奇. 立井施工智能化技术现状与展望. 煤炭工程. 2024(11): 68-75 .
![]() | |
37. |
张林,王国法,刘治国,富佳兴,王丹丹,郝雅琦,孟令宇,张建中,周兆宇,张亮,覃杰. 煤矿智能化建设市场现状及发展趋势研究. 煤炭科学技术. 2024(11): 29-44 .
![]() | |
38. |
王忠宾,魏东,司垒,梁超权,谭超,赵亦辉. 基于协议匹配和数据压缩的采煤机数据管理技术研究. 煤炭科学技术. 2024(11): 89-102 .
![]() | |
39. |
杨若冰,曹现刚,杨鑫,张鑫媛. 基于改进VAE-GCN的刮板输送机健康状态识别方法. 机械设计与研究. 2024(06): 277-283+302 .
![]() | |
40. |
刘送永,朱瑞,左辉,杨雪源. 采煤机滚筒适应性设计方法研究. 中南大学学报(自然科学版). 2024(12): 4544-4559 .
![]() | |
41. |
谭章禄,王美君,叶紫涵. 智能化煤矿数据治理体系与关键问题研究. 工矿自动化. 2023(05): 22-29 .
![]() | |
42. |
王勇,古长具,贺飞,冀畔俊,李超杰,李同想. 矿用TBM高效支护技术及安全防护装置设计与应用. 煤矿机电. 2023(01): 34-41 .
![]() | |
43. |
孙亮. 木瓜煤矿6.5m大采高智能化工作面三角煤工艺现场实践与优化. 山西煤炭. 2023(02): 70-75+102 .
![]() | |
44. |
王国法,庞义辉,许永祥,孟令宇,韩会军. 厚煤层智能绿色高效开采技术与装备研发进展. 采矿与安全工程学报. 2023(05): 882-893 .
![]() | |
45. |
何满潮. 无煤柱自成巷开采理论与110工法. 采矿与安全工程学报. 2023(05): 869-881 .
![]() | |
46. |
赵旭峰. 煤矿岩巷掘进工作面快速掘进工艺技术研究. 内蒙古煤炭经济. 2023(14): 28-30 .
![]() | |
47. |
王国法,巩师鑫,申凯. 煤矿智能安控技术体系与高质量发展对策. 矿业安全与环保. 2023(05): 1-8 .
![]() | |
48. |
孙立虎,王敏,于冰冰,高正华. 大倾角倒梯形煤巷新型配套快速掘进技术研究. 煤炭工程. 2023(11): 49-55 .
![]() | |
49. |
张辉,苏国用,赵东洋. 基于FBEC-YOLOv5s的采掘工作面多目标检测研究. 工矿自动化. 2023(11): 39-45 .
![]() | |
50. |
赵乾,韩刚,白刚,解嘉豪. 基于BOTDA技术感测的保护层开采下伏煤岩卸压效果试验研究. 内蒙古煤炭经济. 2023(21): 20-22 .
![]() | |
51. |
王学文,麻豪洲,李博,张沛林,夏蕊. 不同工况条件下刮板输送机刚散耦合效应研究. 煤炭科学技术. 2023(11): 190-201 .
![]() | |
52. |
杨永锴,张敏龙,许春雨,宋建成,田慕琴,宋单阳,张晓海,聂鸿霖. 液压支架电液控制系统总线通信故障检测与诊断方法. 工矿自动化. 2023(12): 70-76 .
![]() | |
53. |
巩师鑫,任怀伟,黄伟,李建. 复杂起伏煤层自适应开采截割路径优化与仿真. 煤炭科学技术. 2023(S2): 210-218 .
![]() | |
54. |
李曼,刘俊棋,曹现刚. 采煤机惯性传感器的减振方法与装置. 煤炭科学技术. 2023(S2): 219-228 .
![]() | |
55. |
崔耀,王军,赵旭,潘占仁,李艳杰. 采煤机电缆自动拖拽系统的设计及应用. 煤炭科学技术. 2023(S2): 268-274 .
![]() | |
56. |
朱良辰,王世博,马光明,王赟,朱煜. 液压支架硬件在环仿真系统研究. 煤炭科学技术. 2023(S2): 294-305 .
![]() |